zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Controllability of impulsive functional differential systems in Banach spaces. (English) Zbl 1110.34057

In a Banach space X, the impulsive functional-differential equation

x ˙(t)=Ax(t)+Bu(t)+f(t,x t ),tJ=[0,b],tt k ,k=1,,m,u(·)L 2 (J,U),(1)
x(t k +)=x(t k -)+I k (x(t k -)),k=1,,m,x(t)=Φ(t),t[τ,0],Φ(·)D,(2)

is considered, where A is the infinitesimal generator of a strongly continuous semigroup of bounded linear operators T(t),B is a bounded linear operator; and D is a set of piecewise continuous functions φ:[τ,0]X having finitely many discontinuity points of the first kind. A function x(t)X,t[τ,b], is said to be a solution of (1), (2) if x(t) satisfies condition (2);the restriction of x(t) on the interval [t k ,t k+1 ],k=1,,m is continuous and the following integral equation is verified

x(t)=T(t)Φ(t)+ 0 t T(t-s)[(Bu)(s)+f(s,x s )]ds+
0<t<t k T(t-t k )I k (x(t k -)),tJ·

System (1), (2) is said be controllable if for every initial function Φ(·)D and x 1 X, there exists a control u(·)L 2 (J,U) such that the solution x(t) corresponding to the control u(t) satisfies x(b)=x 1 · On the basis of Schaefer’s fixed-point theorem, sufficient conditions for controllability are obtained.

34K35Functional-differential equations connected with control problems
34K45Functional-differential equations with impulses
93C23Systems governed by functional-differential equations