zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A spectral collocation method based on integrated Chebyshev polynomials for two-dimensional biharmonic boundary-value problems. (English) Zbl 1110.65112
Summary: This paper reports a new spectral collocation method for numerically solving two-dimensional biharmonic boundary-value problems. The construction of the Chebyshev approximations is based on integration rather than conventional differentiation. This use of integration allows: (i) the imposition of the governing equation at the whole set of grid points including the boundary points and (ii) the straightforward implementation of multiple boundary conditions. The performance of the proposed method is investigated by considering several biharmonic problems of first and second kinds; more accurate results and higher convergence rates are achieved than with conventional differential methods.

MSC:
65N35Spectral, collocation and related methods (BVP of PDE)
35J40Higher order elliptic equations, boundary value problems
65N12Stability and convergence of numerical methods (BVP of PDE)