zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Globally conservative properties and error estimation of a multi-symplectic scheme for Schrödinger equations with variable coefficients. (English) Zbl 1110.65116

Authors’ summary: Based on the multi-symplecticity of the Schrödinger equations with variable coefficients, we give a multi-symplectic numerical scheme, and investigate some conservative properties and error estimation of it. We show that the scheme satisfies discrete normal conservation law corresponding to one possessed by the original equation, and propose global energy transit formulae in temporal direction. We also discuss some discrete properties corresponding to energy conservation laws of the original equations.

In numerical experiments, comparisons with the modified Goldberg scheme and Modified Crank-Nicolson scheme are given to illustrate some properties of the multi-symplectic scheme in the numerical implementation, and the global energy transit is monitored due to the scheme does not preserve energy conservation law. Our numerical experiments show the match between theoretical and corresponding numerical results.

MSC:
65P10Numerical methods for Hamiltonian systems including symplectic integrators
37K10Completely integrable systems, integrability tests, bi-Hamiltonian structures, hierarchies
37M15Symplectic integrators (dynamical systems)
35Q55NLS-like (nonlinear Schrödinger) equations
65M15Error bounds (IVP of PDE)
65M06Finite difference methods (IVP of PDE)