zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Orthogonal packing of rectangular items within arbitrary convex regions by nonlinear optimization. (English) Zbl 1110.90072
Summary: The orthogonal packing of rectangular items in an arbitrary convex region is considered in this work. The packing problem is modeled as the problem of deciding for the feasibility or infeasibility of a set of nonlinear equality and inequality constraints. A procedure based on nonlinear programming is introduced and numerical experiments which show that the new procedure is reliable are exhibited. We address the problem of packing orthogonal rectangles within an arbitrary convex region. We aim to show that smooth nonlinear programming models are a reliable alternative for packing problems and that well-known general-purpose methods based on continuous optimization can be used to solve the models. Numerical experiments illustrate the capabilities and limitations of the approach.
MSC:
90C25Convex programming
90C27Combinatorial optimization
Software:
SPG