zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Two profitless delays for the SEIRS epidemic disease model with nonlinear incidence and pulse vaccination. (English) Zbl 1111.92049

Summary: A new SEIRS epidemic disease model with two profitless delays and nonlinear incidence are proposed, and the dynamic behavior of the model under pulse vaccination is analyzed. Using a discrete dynamical system determined by the stroboscopic map, we show that there exist ‘infection-free’ periodic solutions; further we show that the ‘infection-free’ periodic solution is globally attractive when the period of impulsive effect is less than some critical value.

Using a new modeling method, we obtain sufficient conditions for the permanence of the epidemic model with pulse vaccination. We show that time delays, pulse vaccination and nonlinear incidence can bring different effects on the dynamic behavior of the model by numerical analysis. Our results also show the delays are “profitless”. The main feature is to introduce two discrete time delays and impulse into the SEIRS epidemic model and to give pulse vaccination strategies.

34C25Periodic solutions of ODE
34A37Differential equations with impulses
34K60Qualitative investigation and simulation of models
37N25Dynamical systems in biology
65L99Numerical methods for ODE