zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Efficient elliptic curve scalar multiplication algorithms resistant to power analysis. (English) Zbl 1111.94013
Summary: This paper presents four algorithms for securing elliptic curve scalar multiplication against power analysis. The highest-weight binary form (HBF) of scalars and randomization are applied to resist power analysis. By using a special method to recode the scalars, the proposed algorithms do not suffer from simple power analysis (SPA). With the randomization of the secret scalar or base point, three of the four algorithms are secure against differential power analysis (DPA), refined power analysis (RPA) and zero-value point attacks (ZPA). The countermeasures are also immune to the doubling attack. Fast Shamir’s method is used in order to improve the efficiency of parallel scalar multiplication. Compared with previous countermeasures, the new countermeasures achieve higher security and do not impact overall performance.
14G50Applications of algebraic geometry to coding theory and cryptography