zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Discontinuous Sturm-Liouville problems containing eigenparameter in the boundary conditions. (English) Zbl 1112.34070

The authors consider the following discontinuous Sturm-Liouville eigenvalue problems with eigenvalue parameters both in the equation and in one of the boundary conditions:

τu:=-a(x)u '' +q(x)u=λu,x[-1,0)(0,1]

with the boundary conditions at x=±1

L 1 u:=α 1 u(-1)+α 2 u ' (-1)=0;L 4 (λ)u:=λ(β 1 ' u(1)-β 2 ' u ' (1))+((β 1 u(1)-β 2 u ' (1))=0,

and the transition conditions

L 2 u:=γ 1 u(-0)-δ 1 u(+0)=0,L 3 u:=γ 2 u ' (-0)-δ 2 u ' (+0)=0,

where a(x)=a 1 2 >0 for x[-1,0), a(x)=a 2 2 >0 for x(0,1]; q(x) is a given real-valued function which is continuous in [-1,0] and in [0,1]; α i ,β i ,β i ' ,γ i ,δ i ,i=1,2, are real numbers with |α 1 |+|α 2 |0,|β 1 ' |+|β 2 ' |+|β 1 |+|β 2 |0,|γ 1 |+|δ 1 |0,|γ 2 |+|δ 2 |0, and β 1 ' β 2 -β 1 β 2 ' >0. With an operator theoretic approach, some classical properties and asymptotic approximate formulae for eigenvalues and normalized eigenfunctions are obtained.

34L20Asymptotic distribution of eigenvalues for OD operators
34B24Sturm-Liouville theory
[1]Fulton, C. T.: Two–point boundary value problems with eigenvalue parameter contained in the boundary conditions. Proc. Roy. Soc. Edin., 77(A), 293–308 (1977)
[2]Birkhoff, G. D.: On the asymptotic character of the solution of the certain linear differential equations containing parameter. Trans. Amer. Soc., 9, 219–231 (1908) · doi:10.1090/S0002-9947-1908-1500810-1
[3]Hinton, D. B.: An expansion theorem for an eigenvalue problem with eigenvalue parameter in the boundary condition. Quart. J. Math. Oxford., 30, 33–42 (1979) · Zbl 0427.34023 · doi:10.1093/qmath/30.1.33
[4]Schneider, A.: A note on eigenvalue problems with eigenvalue parameter in the boundary conditions. Math. Z., 136, 163–167 (1974) · Zbl 0308.34023 · doi:10.1007/BF01214350
[5]Shkalikov, A. A.: Boundary value problems for ordinary differential equations with a parameter in boundary condition. Trudy Sem. Imeny I. G. Petrowsgo, 9, 190–229 (1983)
[6]Walter, J.: Regular eigenvalue problems with eigenvalue parameter in the boundary conditions. Math. Z., 133, 301–312(1973) · Zbl 0259.47046 · doi:10.1007/BF01177870
[7]Yakubov, S.: Completeness of Root Functions of Regular Differential Operators, Longman, Scientific Technical, New York, 1994
[8]Yakubov, S., Yakubov, Y.: Abel basis of root functions of regular boundary value problems. Math. Nachr., 197, 157–187 (1999) · Zbl 0922.34069 · doi:10.1002/mana.19991970110
[9]Yakubov, S., Yakubov, Y.: Differential–Operator Equations, Ordinary and Partial Differential Equations, Chapman and Hall/CRC, Boca Raton, 568, 2000
[10]Titchmarsh, E. C.: Eigenfunctions Expansion Associated with Second Order Differential Equations I, 2nd edn., Oxford Univ. Press, London, 1962