zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Bifurcation analysis for Chen’s system with delayed feedback and its application to control of chaos. (English) Zbl 1112.37303
Summary: Time-delayed feedback has been introduced as a powerful tool for control of unstable periodic orbits or control of unstable steady states. In the present paper, regarding the delay as parameter, we investigate the effect of delay on the dynamics of Chen’s system with delayed feedback. We first consider the effect of delay on the steady states, and then investigate the existence of local Hopf bifurcations. By using the normal form theory and center manifold argument, we derive the explicit formulas determining the stability, direction and other properties of bifurcating periodic solutions. Finally, we give several numerical simulations, which indicate that when the delay passes through certain critical values, chaotic oscillation is converted into a stable steady state or a stable periodic orbit.
MSC:
37D45Strange attractors, chaotic dynamics
34K18Bifurcation theory of functional differential equations
37G15Bifurcations of limit cycles and periodic orbits
93C23Systems governed by functional-differential equations