zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An age-structured epidemic model of rotavirus with vaccination. (English) Zbl 1113.92045
Summary: The recent approval of a rotavirus vaccine in Mexico motivates this study on the potential impact of the use of such a vaccine on rotavirus prevention and control. An age-structured model that describes the rotavirus transmission dynamics of infections is introduced. Conditions that guarantee the local and global stability analysis of the disease-free steady state distribution as well as the existence of an endemic steady state distribution are established. The impact of maternal antibodies on the implementation of vaccine is evaluated. The model results are used to identify optimal age-dependent vaccination strategies. A convergent numerical scheme for the model is introduced but not implemented. This paper is dedicated to Prof. K. P. Hadeler, who continues to push the frontier of knowledge in mathematical biology.
MSC:
92C60Medical epidemiology
65N06Finite difference methods (BVP of PDE)
65N12Stability and convergence of numerical methods (BVP of PDE)
References:
[1]Anguelov R., Lubuma J.M.-S. (2001) Contributions to the mathematics of the nonstandard finite difference method and applications. Numer. Methods Part. Diff. Eq. 17(5): 518–543 · Zbl 0988.65055 · doi:10.1002/num.1025
[2]Bernstein D.I., Sander D.S., Smith V.E., Schiff G.M., Ward RL. (1991) Protection from rotavirus reinfection: 2-year prospective study. J. Infect. Dis. 164(2): 277–283 · doi:10.1093/infdis/164.2.277
[3]Bishop R.F., Davidson G.P., Holmes I.H., Ruck B.J. (1973) Virus particles in epithelial cells of duodenal mucosa from children with viral gastroenteritis. Lancet 1, 1281–1283 · doi:10.1016/S0140-6736(73)92867-5
[4]Bishop R.F., Barnes G.L., Cipriani E., Lund J.S. (1983) Clinical immunity after neonatal rotavirus infection. A prospective longitudinal study in young children. N. Engl. J. Med. 309(2): 72–76
[5]Busenberg S., Castillo-Chavez C. (1991) A general solution of the problem of mixing subpopulations, and its application to risk- and age-structure epidemic models for the spread of AIDS. IMA. J. Math. Appl. Med. Biol. 8(1): 1–29 · doi:10.1093/imammb/8.1.1
[6]Castillo-Chavez C., Feng Z. (1998) Global stability of an age-structure model for TB and its applications to optimal vaccination strategies. Math. Biosc. 151(2): 135–154 · Zbl 0981.92029 · doi:10.1016/S0025-5564(98)10016-0
[7]Clark H.F., Lawley D., Shrager D., Jean-Guillaume D., Offit P.A., Whang S.Y., Eiden J.J., Bennett P.S., Kaplan K.M., Shaw A.R. (2004) Infant immune response to human rotavirus serotype G1 vaccine candidate reassortant WI79-9: different dose response patterns to virus surface proteins VP7 and VP4. Pediatr. Infect. Dis. J. 23(3): 206–211 · doi:10.1097/01.inf.0000115503.55212.bf
[8]Cunliffe N.A., Bresee J.S., Hart C.A. (2002) Rotavirus vaccines: development, current issues and future prospects. J. Infect. 45(1): 1–9 · doi:10.1053/jinf.2002.1012
[9]Dennehy P.H. (2005) Rotavirus vaccines: an update. Curr. Opin. Pediatr. 17(1): 88–92 · doi:10.1097/01.mop.0000147907.30720.04
[10]Dietz K., Schenzle D. (1985) Proportionate mixing models for age-dependent infection transmission. J. Math Biol. 22(1): 117–120 · Zbl 0558.92014 · doi:10.1007/BF00276550
[11]Gripenberg G., Londen S.O., Staffans O.: Volterra Integral and Functional Equations. Series: Encyclopedia of Mathematics and its Applications (No. 34). Cambridge (1990)
[12]Hadeler K.P., Müller J.(1993) Vaccination in age-structured populations II: optimal vaccination strategies. In: Isham V., Medley G., (ed) Models for Infectious Human Diseases: Their Structure and Relation to Data. Cambridge University Press, Cambridge, pp. 102–114
[13]Hadeler K.P., Müller J.: Optimal harvesting and optimal vaccination, (In submission)
[14]Hardy D. (1987) Epidemiology of rotaviral infection in adults. Rev. Infect. Dis. 9, 461–469 · doi:10.1093/clinids/9.3.461
[15]Hochwald C., Kivela L.: Rotavirus vaccine, live, oral, tetravalent (RotaShield). Pediatr. Nurs. 25(2), 203–204, 207 (1999)
[16]Huang W., Castillo-Chavez C.: Age-structured core groups and their impact on HIV dynamics. In: Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods and Theory, IMA, vol. 126, pp. 261–273, Springer, Berlin Heidelberg New York
[17]Iannelli M., Milner F., Pugliese A. (1992) Analytical and numerical results for the age structured SIS epidemic model with mixed inter-intra-cohort transmission. SIAM J. Math. Anal. Publ. Soc. Indust. Appl. Math. 23, 662–688
[18]Kapikian A.Z., Kim H.W., Wyatt R.G., Cline W.L., Arrobio J.O., Brandt C.D., Rodriguez W.J., Sack D.A., Chanock R.M., Parrott R.H. (1976) Human reovirus-like agent as the major pathogen associated with ”winter” gastroenteritis in hospitalized infants and young children. N. Engl. J. Med. 294, 965–972 · doi:10.1056/NEJM197604292941801
[19]Kapikian A.Z., Wyatt R.G., Levine M.M. et al. (1983) Oral administration of human rotavirus to volunteers: induction of illness and correlates of resistance. J. Infect. Dis. 147, 95–106 · doi:10.1093/infdis/147.1.95
[20]Kribs-Zaleta C.M., Martcheva M. (2002) Vaccination strategies and backward bifurcation in an age-since-infection structured model. Math. Biosci. 177–178: 317–332 · Zbl 0998.92033 · doi:10.1016/S0025-5564(01)00099-2
[21]Mastretta E., Longo P., Laccisaglia A., Balbo L., Russo R., Mazzaccara A., Gianino P. (2002) Effect of lactobacillus GG and breast-feeding in the prevention of rotavirus nosocomial infection. J. Pediat. Gastroenterol. Nutr. 35(4): 527–531 · doi:10.1097/00005176-200210000-00013
[22]Mickens R.E. (ed) (2005) Advances in the Applications of Nonstandard Finite Difference Schemes. World Scientific Publishing Company, Singapore
[23]Nguyen T.V., Yuan L., P Azevedo M.S., Jeong K.I., Gonzalez A.M., Iosef C., Lovgren-Bengtsson K., Morein B., Lewis P., Saif L.J. (2006) Low titer maternal antibodies can both enhance and suppress B cell responses to a combined live attenuated human rotavirus and VLP-ISCOM vaccine. Vaccine 24(13): 2302–2316 · doi:10.1016/j.vaccine.2005.11.043
[24]Parashar U.D., Bresee J.S., Gentsch J.R., Glass R.I. (1998) Rotavirus. Emerg. Infect. Dis. 4(4): 561–570 · doi:10.3201/eid0404.980406
[25]Parashar U.D., Holman R.C., Clarke M.J., Bresee J.S., Glass R.I. (1998) Hospitalizations associated with rotavirus diarrhea in the United States, 1993 through 1995: surveillance based on the new ICD-9-CM rotavirus-specific diagnostic code. J. Infect. Dis. 177(1): 7–13 · doi:10.1086/513808
[26]Pérez-Schael I., Guntiñas M.J., Pérez M., Pagone V., Rojas A.M., González R., Cunto W., Hoshino Y., Kapikian A.Z. (1997) Efficacy of the Rhesus RotavirusĐBased Quadrivalent Vaccine in Infants and Young Children in Venezuela. N. Engl. J. Med. 337(17): 1181–1187 · doi:10.1056/NEJM199710233371701
[27]Ramos, P D, Stefanelli C C, Linhares R E C et al. (1998) The infectivity of pig rotavirus in stools. Braz. J. Vet. Res. Anim. Sci. 35(2): 00–00 · doi:10.1590/S1413-95961998000200007
[28]Rorres C., Fair W. (1975) Optimal harvesting policy for an age-specific population. Math. Biosci. 24, 31–47 · Zbl 0304.92018 · doi:10.1016/0025-5564(75)90065-6
[29]Rotavirus Vaccine Program: A path affiliate. As found at http://www.rotavirusvaccine.org/ vaccine-facts.htm
[30]Shim E., Banks T.B., Castillo-Chavez C.: Seasonality of rotavirus infection with its vaccination. In: Gumel A. (Chief Ed.), Castillo-Chavez C., Clemence D.P. and Mickens R.E (eds.) Modeling The Dynamics of Human Diseases: Emerging Paradigms and Challenges. AMS Cotempor. Math. Ser. (to appear).
[31]Velazquez F.R., Matson D.O., Guerrero M.L., Shults J., Calva J.J., Morrow A.L., Glass R.I., Pickering L.K., Ruiz-Palacios G.M. (2000) Serum antibody as a marker of protection against natural rotavirus infection and disease. J. Infect. Dis. 182(6): 1602–1609 · doi:10.1086/317619
[32]Vesikari, T, Clark H.F., Offit P.A., et al.: The effect of dose and composition of a pentavalent rotavirus vaccine (RotaTeq) upon safety, efficacy, and immunogenicity in healthy infants. In: Presented at the 22nd Annual Meeting of the European Society for Pediatric Infectious Diseases (ESPID), Tampere, Finland, 26–28, (2004)
[33]Vesikari T., Giaquinto C., Huppertz H.I. (2006) Clinical trials of rotavirus vaccines in europe. Pediatr. Infect. Dis. J. 25(1): S42–7 · doi:10.1097/01.inf.0000197565.45345.4e
[34]Ward R.L., Bernstein D.I. (1994) Protection against rotavirus disease after natural rotavirus infection. US Rotavirus Vaccine Efficacy Group. J. Infect. Dis. 169(4): 900–904