zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An effective co-evolutionary differential evolution for constrained optimization. (English) Zbl 1114.65061

Summary: Many practical problems can be formulated as constrained optimization problems. Due to the simple concept and easy implementation, the penalty function method has been one of the most common techniques to handle constraints. However, the performance of this technique greatly relies on the setting of penalty factors, which are usually determined by manual trial and error, and the suitable penalty factors are often problem-dependent and difficult to set.

In this paper, a differential evolution approach based on a co-evolution mechanism is proposed to solve the constrained problems. First, a special penalty function is designed to handle the constraints. Second, a co-evolution model is presented and differential evolution is employed to perform evolutionary search in spaces of both solutions and penalty factors. Thus, the solutions and penalty factors evolve interactively and self-adaptively, and both the satisfactory solutions and suitable penalty factors can be obtained simultaneously.

Simulation results based on several benchmark functions and three well-known constrained design problems as well as comparisons with some existed methods demonstrate the effectiveness, efficiency and robustness of the proposed method.

MSC:
65K05Mathematical programming (numerical methods)
90C30Nonlinear programming