zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Parallel asynchronous particle swarm optimization. (English) Zbl 1114.65063

Summary: The high computational cost of complex engineering optimization problems has motivated the development of parallel optimization algorithms. A recent example is the parallel particle swarm optimization (PSO) algorithm, which is valuable due to its global search capabilities. Unfortunately, because existing parallel implementations are synchronous (PSPSO), they do not make efficient use of computational resources when a load imbalance exists.

In this study, we introduce a parallel asynchronous PSO (PAPSO) algorithm to enhance computational efficiency. The performance of the PAPSO algorithm is compared to that of a PSPSO algorithm in homogeneous and heterogeneous computing environments for small- to medium-scale analytical test problems and a medium-scale biomechanical test problem. For all problems, the robustness and convergence rate of PAPSO are comparable to those of PSPSO.

However, the parallel performance of PAPSO is significantly better than that of PSPSO for heterogeneous computing environments or heterogeneous computational tasks. For example, PAPSO is 3.5 times faster than was PSPSO for the biomechanical test problem executed on a heterogeneous cluster with 20 processors. Overall, PAPSO exhibits excellent parallel performance when a large number of processors (more than about 15) is utilized and either (1) heterogeneity exists in the computational task or environment, or (2) the computation-to-communication time ratio is relatively small.

MSC:
65K05Mathematical programming (numerical methods)
90C15Stochastic programming
65Y05Parallel computation (numerical methods)
65Y20Complexity and performance of numerical algorithms
92C10Biomechanics