zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Formulation and preparation for numerical evaluation of linear complementarity systems in dynamics. (English) Zbl 1114.70008
The authors present a theoretical framework for finite-dimensional dynamical systems with planar unilateral Coulomb-contact constraints. The contact kinematics is formulated in terms of gap functions and normal and tangential relative velocities. As a tool of research, the authors use the concept of linear complementarity to embed a subclass of non-smooth systems in mechanics. The example of woodpecker toy is given as a typical example of a low-dimensional dynamical system with frictional unilateral contacts. The authors examine the time evolution of angular displacements and velocities of the woodpecker’s body and sleeve, and give the corresponding limit cicles on phase plane.
70E55Dynamics of multibody systems
70F40Problems with friction (particle dynamics)
70K05Phase plane analysis, limit cycles (general mechanics)
90C90Applications of mathematical programming
[1]Alart, P. and Curnier, A. A mixed formulation for frictional contact problems prone to Newton like solution methods. Computer Methods inApplied Mechanics and Engineering 92(3), 1991, 353–357. · Zbl 0825.76353 · doi:10.1016/0045-7825(91)90022-X
[2]Anitescu, M., Potra, F.A. and Stewart, D.E. Time-stepping for three-dimensional rigid body dynamics. Computer Methods inApplied Mechanics and Engineering 177(3), 1999, 183–197. · Zbl 0967.70003 · doi:10.1016/S0045-7825(98)00380-6
[3]Cottle, R.W., Pang, J.S. and Stone, R.E. The Linear Complementarity Problem, Computer Science and Scientific Computing, Academic Press, London, 1992.
[4]Curnier, A., He, Q.C. and Klarbring, A. Continuum mechanics modelling of large deformation contact with friction, in Contact Mechanics, Raous, M., Jean, M. and Moreau, J.J. (eds.), Plenum Press, New York, 1995, 145–158.
[5]Elstrodt, J., Maßund Integrationstheorie, Springer Verlag, Berlin, 1996.
[6]Facchinei, F., Fischer, A. and Kanzow, Ch. A semismooth Newton method for variational inequalities: The case of box constraints, in Complementarity and Variational Problems: State of the Art, Ferris, M.C. and Pang, J.-S. (eds.), SIAM, Philadelphia, 1997, 76–90.
[7]Glocker, Ch. Dynamik von Starrkörpersystemen mit Reibung und Stößen. VDI-Fortschrittberichte Mechanik/Bruchmechanik, Reihe 18, Nr. 182, VDI-Verlag, Düsseldorf, 1995.
[8]Glocker, Ch. Set-Valued Force Laws: Dynamics of Non-Smooth Systems, Springer Verlag, Berlin Heidelberg, 2001.
[9]Jean, M. The non-smooth contact dynamics method. Computer Methods in Applied Mechanics Engineering 177, 1999, 235–257. · Zbl 0959.74046 · doi:10.1016/S0045-7825(98)00383-1
[10]Klarbring, A. Mathematical programming and augmented Lagrangian methods for frictional contact problems. Proceeding on Contact Mechanics International Symposium, Lausanne, 1992, 409–422.
[11]Leine, R.I., Glocker, Ch. and van Campen, D.H. Nonlinear dynamics and modeling of various wooden toys with impact and friction. Journal of Vibration and Control 9, 2003, 25–78.
[12]Moreau, J.J. Unilateral contact and dry friction in finite freedom dynamics, in Non-Smooth Mechanics and Applications, Moreau, J.J. and Panagiotopoulos, P.D. (eds.), CISM Courses and Lectures, Vol. 302, Springer Verlag, Wien, 1988, 1–82.
[13]Moreau, J.J. Bounded variation in time, in Topics in Nonsmooth Mechanics Moreau, J.J. Panagiotopoulos, P.D. and Strang, G. (eds.), Birkhäuser Verlag, Basel, 1988, 1–74.
[14]Moreau, J.J., Numerical aspects of the sweeping process. ComputerMethods in Applied Mechanics. Engineering. 177, 1999, 329–349. · Zbl 0968.70006 · doi:10.1016/S0045-7825(98)00387-9
[15]Murty, K.G. Linear Complementarity, Linear and Nonlinear Programming (Sigma Series in Applied Mathematics), Vol. 3, Heldermann Verlag, Berlin, 1988.
[16]Panagiotopoulos, P.D. A nonlinear programming approach to the unilateral contact-, and friction-boundary value problem in the theory of elasticity. Ingenieur-Archiv 44, 1975, 421–432. · Zbl 0332.73018 · doi:10.1007/BF00534623
[17]Pang, J.S. and Trinkle, J.C. Complementarity formulations and existence of solutions of dynamic multi-rigid-body contact problems with Coulomb friction. Mathematical Programming 30, 1996, 199–226. · Zbl 0854.70008 · doi:10.1007/BF02592103
[18]Paoli, L. and Schatzman, M. A Numerical scheme for impact problems I: The one-dimensional case. SIAM Journal on Numerical Analysis 40(2), 2002, 702–733. · Zbl 1021.65065 · doi:10.1137/S0036142900378728
[19]Paoli, L. and Schatzman, M. A Numerical scheme for impact problems II: The multidimensional case. SIAM Journal on Numerical Analysis 40(2), 2002, 734–768. · Zbl 1027.65093 · doi:10.1137/S003614290037873X
[20]Pfeiffer, F. and Glocker, Ch. Multibody Dynamics with Unilateral Contacts, Wiley, New York, 1996.
[21]Rudin, W.Real and Complex Analysis,Tata McGraw-Hill, New Delhi, India, 1981.
[22]Stewart, D.E. and Trinkle, J.C. An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and Coulomb friction. International JournalNumericalMethods Engineering 39(15), 1996, 2673–2691.
[23]Stewart, D.E. Convergence of a time-stepping scheme for rigid body dynamics and resolution of Painlevé’s problem. Archives of Rational Mechanics and Analysis 145, 1998, 215–260. · Zbl 0922.70004 · doi:10.1007/s002050050129