×

Quantitative fault estimation for a class of non-linear systems. (English) Zbl 1115.93040

Summary: This paper develops a methodology for actuator fault diagnostics and quantitative estimation of fault signals in a class of non-linear systems. The class of non-linear systems considered is one in which the non-linearity is an incremental quadratic type of non-linearity that includes Lipschitz, positive real and sector non-linear functions. The methodology provides for both state estimation and fault vector estimation. An LMI procedure can be utilized for explicit computation of the observer gains. The procedure developed can also be specialized to linear time invariant systems. Compared to previous results for LTI systems, the procedure developed herein does not require the LTI system to be minimum phase. The use of the developed methodology is demonstrated through two illustrative examples of real world physical applications.

MSC:

93C10 Nonlinear systems in control theory
93B30 System identification
93C15 Control/observation systems governed by ordinary differential equations
90B25 Reliability, availability, maintenance, inspection in operations research
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Acikmese, AB and Corless, M. 2005. ”Observers for systems with nonlinearities satisfying an incremental quadratic inequality”. American Control Conference. 2005, Portland, Oregon, USA. pp.3622–3629.
[2] Beard RV, Failure Accommodation in Linear Systems Through Self Re-organization (1971)
[3] Boyd S, SIAM Studies in Appl. Math. 15 (1994)
[4] DOI: 10.1109/TAES.1975.308108 · doi:10.1109/TAES.1975.308108
[5] DOI: 10.1109/TAC.1977.1101598 · doi:10.1109/TAC.1977.1101598
[6] Demetriou M, in Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, FL, USA 1 pp 1143–
[7] Douglas RK, ”Fault detection and identification with application to advanced vehicle control systems” (1997)
[8] DOI: 10.1016/0005-1098(90)90018-D · Zbl 0713.93052 · doi:10.1016/0005-1098(90)90018-D
[9] DOI: 10.1109/37.9163 · doi:10.1109/37.9163
[10] DOI: 10.1016/0005-1098(84)90098-0 · Zbl 0539.90037 · doi:10.1016/0005-1098(84)90098-0
[11] Jones HL, ”Failure detection in linear systems” (1973)
[12] Kitamura M, Trans. American Nuclear Soc. 34 pp 581– (1980)
[13] DOI: 10.1016/S0005-1098(99)00067-9 · Zbl 0942.93010 · doi:10.1016/S0005-1098(99)00067-9
[14] Krishnaswami, V and Rizzoni, G. 1994. ”Nonlinear parity equation residual generation for fault detection and isolation”.Proceedings of the IFAC Symposium on Fault Detection, Supervision Safety Technical Processes. 1994. pp.317–322.
[15] DOI: 10.1016/0005-1098(71)90028-8 · doi:10.1016/0005-1098(71)90028-8
[16] Montgomery, RC and Caglayan, AK. 1974. ”A Sel re-organizing digital flight control system for aircraft”.AIAA 12th Aerospace Sciences Meeting. 1974, Washington, DC.
[17] DOI: 10.1049/ip-cta:20040796 · doi:10.1049/ip-cta:20040796
[18] Patton RJ, Fault Diagnosis in Dynamic Systems: Theory and Application (1989)
[19] DOI: 10.1080/002071798222640 · Zbl 0933.93019 · doi:10.1080/002071798222640
[20] Rajamani R, Vehicle Dynamics and Control (2005)
[21] DOI: 10.1080/00207170412331270523 · Zbl 1069.93009 · doi:10.1080/00207170412331270523
[22] DOI: 10.1109/87.865858 · doi:10.1109/87.865858
[23] Trunov, AB and Polycarpou, MM. 1999. ”Robust fault diagnosis of state and sensor faults in nonlinear multivariable systems”.Proceedings of the 1999 American Control Conference1. 1999. pp.608–612.
[24] DOI: 10.1109/9.928602 · Zbl 1052.93023 · doi:10.1109/9.928602
[25] Vemuri AT, in Proceedings of the 37th IEEE Conference on Decision and Control 5 pp 2857–
[26] DOI: 10.1016/S0005-1098(96)00155-0 · Zbl 0874.93058 · doi:10.1016/S0005-1098(96)00155-0
[27] DOI: 10.1016/0005-1098(76)90041-8 · Zbl 0345.93067 · doi:10.1016/0005-1098(76)90041-8
[28] DOI: 10.1080/002071797223857 · Zbl 0887.93008 · doi:10.1080/002071797223857
[29] Zhang, X, Polycarpou, M and Parisini, T. 2001. ”Fault isolation in a class of nonlinear uncertain input–output systems”.Proceedings of the American Control Conference. 2001, Arlington, Virginia, USA. pp.1741–1746. · Zbl 1051.93041
[30] DOI: 10.1109/9.995036 · Zbl 1125.93358 · doi:10.1109/9.995036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.