zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Front propagation for discrete periodic monostable equations. (English) Zbl 1116.35063
The systems of infinitely many ordinary differential equations (ODEs) under study arise from the spatial-discrete version of a one-dimensional continuous periodic reaction-diffusion equation. The authors show that pulsating travelling solutions to the ODE systems exist if and only if the wave speed of the solutions is above some minimal level. Moreover, the authors prove that the minimal speed levels for the spatial-discrete version converge in some appropriate sense to the minimal speed level for the existence of pulsating traveling solutions to the continuous version.

35K57Reaction-diffusion equations
35K50Systems of parabolic equations, boundary value problems (MSC2000)
39A12Discrete version of topics in analysis
[1]Berestycki, H., Hamel, F.: Front propagation in periodic excitable media. Comm. Pure Appl. Math. 55, 949–1032 (2002) · Zbl 1024.37054 · doi:10.1002/cpa.3022
[2]Berestycki, H., Hamel, F., Nadirashvili, N.: The speed of propagation for KPP type problems. I – Periodic framework. J. Eur. Math. Soc. 7, 173–213 (2005)
[3]Berestycki, H., Hamel, F., Roques, L.: Analysis of the periodically fragmented environment model: I – Influence of periodic heterogeneous environment on species persistence. J. Math. Biology 51, 75–113 (2005) · Zbl 1066.92047 · doi:10.1007/s00285-004-0313-3
[4]Berestycki, H., Hamel, F., Roques, L.: Analysis of the periodically fragmented environment model: II – Biological invasions and pulsating travelling fronts. J. Math. Pures Appl. 84, 1101–1146 (2005) · Zbl 1083.92036 · doi:10.1016/j.matpur.2004.10.006
[5]Chen, X., Guo, J.-S.: Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations. J. Differential Equations 184, 549–569 (2002) · Zbl 1010.39004 · doi:10.1006/jdeq.2001.4153
[6]Chen, X., Guo, J.-S.: Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics. Math. Ann. 326, 123–146 (2003) · Zbl 1086.34011 · doi:10.1007/s00208-003-0414-0
[7]Chow, S.N., Mallet-Paret, J., Shen, W.: Travelling waves in lattice dynamical systems. J. Differential Equations 149, 249–291 (1998) · Zbl 0911.34050 · doi:10.1006/jdeq.1998.3478
[8]Fife, P.C.: Mathematical aspects of reacting and diffusing systems. Lecture Notes in Biomathematics 28, Springer Verlag, 1979
[9]Fisher, R.A.: The advance of advantageous genes. Ann. Eugenics 7, 335–369 (1937)
[10]Freidlin, M.I.: Limit theorems for large deviations and reaction-diffusion equations. Ann. Probab. 13, 639–675 (1985) · Zbl 0576.60070 · doi:10.1214/aop/1176992901
[11]Gärtner, J., Freidlin, M.I.: On the propagation of concentration waves in periodic and random media. Soviet Math. Dokl. 20, 1282–1286 (1979)
[12]Hudson, W., Zinner, B.: Existence of traveling waves for a generalized discrete Fisher’s equation. Comm. Appl. Nonlinear Anal. 1, 23–46 (1994)
[13]Hudson, W., Zinner, B.: Existence of travelling waves for reaction-dissusion equations of Fisher type in periodic media. In: J. Henderson (ed.) Boundary Value Problems for Functional-Differential Equations. World Scientific, 1995, pp. 187–199
[14]Keener, J.P.: Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math. 47, 556–572 (1987) · Zbl 0649.34019 · doi:10.1137/0147038
[15]Kolmogorov, A.N., Petrovsky, I.G., Piskunov, N.S.: Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un probléme biologique. Bull. Université d’État à Moscou, Ser. Int., Sect. A. 1, 1–25 (1937)
[16]Matano, H.: Travelling Waves in Spatially Inhomogeneous Diffusive Media – The Non-periodic Case
[17]Nakamura, K.-I.: Effective speed of traveling wavefronts in periodic inhomogeneous media. Proc. Workshop “Nonlinear Partial Differential Equations and Related Topics”, Joint Research Center for Science and Technology of Ryukoku University, 1999, pp. 53–60
[18]Shigesada, N., Kawasaki, K.: Biological invasions: theory and practice. Oxford Series in Ecology and Evolution, Oxford, Oxford University Press, 1997
[19]Shigesada, N., Kawasaki, K., Teramoto, E.: Traveling periodic waves in heterogeneous environments. Theor. Popul. Biology 30, 143–160 (1986) · Zbl 0591.92026 · doi:10.1016/0040-5809(86)90029-8
[20]Shorrocks, B., Swingland, I.R.: Living in a Patch Environment. Oxford University Press, New York, 1990
[21]Weinberger, H.F.: On spreading speeds and traveling waves for growth and migration in periodic habitat. J. Math. Biol. 45, 511–548 (2002) · Zbl 1058.92036 · doi:10.1007/s00285-002-0169-3
[22]Xin, X.: Existence and stability of travelling waves in periodic media governed by a bistable nonlinearity. J. Dynamics Diff. Equations 3, 541–573 (1991) · Zbl 0769.35033 · doi:10.1007/BF01049099
[23]Xin, X.: Existence of planar flame fronts in convective-diffusive periodic media. Arch. Rational Mech. Anal. 121, 205–233 (1992) · Zbl 0764.76074 · doi:10.1007/BF00410613
[24]Xin, X.: Existence and nonexistence of traveling waves and reaction-diffusion front propagation in periodic media. J. Stat. Physics 73, 893–925 (1993) · Zbl 1102.35340 · doi:10.1007/BF01052815
[25]Xin, J.X.: Existence of multidimensional traveling waves in tranport of reactive solutes through periodic porous media. Arch. Rational Mech. Anal. 128, 75–103 (1994) · Zbl 0819.76097 · doi:10.1007/BF00380794
[26]Xin, J.: Front propagation in heterogeneous media. SIAM Review 42, 161–230 (2000) · Zbl 0951.35060 · doi:10.1137/S0036144599364296
[27]Zinner, B.: Existence of traveling wavefront solutions for the discrete Nagumo equation. J. Differential Equations 96, 1–27 (1992) · Zbl 0752.34007 · doi:10.1016/0022-0396(92)90142-A
[28]Zinner, B., Harris, G., Hudson, W.: Traveling wavefronts for the discrete Fisher’s equation. J. Differential Equations 105, 46–62 (1993) · Zbl 0778.34006 · doi:10.1006/jdeq.1993.1082