zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Continuous selection, collectively fixed points and system of coincidence theorems in product topological spaces. (English) Zbl 1117.54032
Summary: Some new continuous selection theorems are proved in noncompact topological spaces. As applications, some new collectively fixed point theorems and coincidence theorems for two families of set-valued mappings defined on product spaces of noncompact topological spaces are obtained under very weak assumptions. These results generalize many known results in the recent literature.
54C65Continuous selections
47H10Fixed point theorems for nonlinear operators on topological linear spaces
54H25Fixed-point and coincidence theorems in topological spaces
[1]Michael, E.: Continuous selections I. Ann. of Math., 63, 361–382 (1956) · Zbl 0071.15902 · doi:10.2307/1969615
[2]Browder, F. E.: The fixed point theory of Multi-valued mappings in topological vector spaces. Math. Ann., 177, 283–301 (1968) · Zbl 0176.45204 · doi:10.1007/BF01350721
[3]Browder, F. E.: Coincidence theorems, minimax theorems, and variational inequalities. Contemporary Math., 26, 67–80 (1984)
[4]Ding, X. P.: Continuous selection theorem, coincidence theorems and intersection theorems concerning sets with H-convex sections. J. Austral Math. Soc. (Ser. A), 52, 11–25 (1992) · doi:10.1017/S1446788700032833
[5]Ding, X. P., Kim, W. K., Tan, K. K.: A Selection theorem and its applications. Bull Austral Math. Soc., 46, 205–212 (1992) · Zbl 0762.47030 · doi:10.1017/S0004972700011849
[6]Park, S.: Continuous selection theorems in generalized convex spaces. Number Funct. Anal. Optim., 25, 567–583 (1999) · Zbl 0931.54017 · doi:10.1080/01630569908816911
[7]Ding, X. P., Park, J. Y.: Continuous selection theorem, coincidence theorem, and generalized equilibrium in L-convex spaces. Comput. Math. Appl., 44, 95–103 (2002) · Zbl 1017.54012 · doi:10.1016/S0898-1221(02)00132-3
[8]Ding, X. P., Park, J. Y.: Colllectively fixed point theorem and abstract economy in G-convex spaces. Numer Funct. Anal. Optim., 23(7/8), 779–790 (2002) · Zbl 1024.54029 · doi:10.1081/NFA-120016269
[9]Yu, Z. T., Lin, L. J.: Continuous selection and fixed point theorems. Nonlinear Anal., 52(2), 445–455 (2003) · Zbl 1033.54011 · doi:10.1016/S0362-546X(02)00107-4
[10]Lin, L. J., Park, S.: On some generalized quasi-equilibrium problems. J. Math. Anal. Appl., 224(1), 167–181 (1998) · Zbl 0924.49008 · doi:10.1006/jmaa.1998.5964
[11]Tarafdar, E.: A point theorem and equilibrium point of an abstract economy. J. Math. Econom, 20(2), 211–218 (1991) · Zbl 0718.90014 · doi:10.1016/0304-4068(91)90010-Q
[12]Lan, K. Q., Webb, J.: New fixed point theorems for a family of mappings and applications to problems on sets with convex sections. Proc Amer. Math. Soc., 126(4), 1127–1132 (1998) · Zbl 0891.46004 · doi:10.1090/S0002-9939-98-04347-0
[13]Ansari, Q. H., Yao, J. C.: A fixed point theorem and its applications to a system of variational inequalities. Bull Austral Math. Soc., 59(2), 433–442 (1999) · Zbl 0944.47037 · doi:10.1017/S0004972700033116
[14]Ding, X. P., Park, J. Y.: New collevtively fixed point theorems and applications in G-convex spaces. Appl. Math. Mech., 23(11), 1237–1249 (2002) · Zbl 1036.47039 · doi:10.1007/BF02439455
[15]Ding, X. P., Park, J. Y.: Collectively fixed-point theorems in noncompact G-convex Spaces. Appl. Math. Lett., 16(3), 137–142 (2003) · Zbl 1064.47051 · doi:10.1016/S0893-9659(03)80022-8
[16]Ding, X. P.: Collectively fixed points and equilibria of generalized games with U-majorized correspondences in locally G-convex uniform spaces. J Sichuan Normal Univ., 25(6), 551–556 (2002)
[17]von Neumann, J.: Über ein ökonomsiches Gleichungssystem und eine Verallgemeinering des Browerschen Fixpunktsatzes. Ergeb. Math. Kolloq, 8, 73–83 (1937)
[18]Ding, X. P.: Coincidence theorems involving composites of acyclic mappings in contractible spaces. Appl. Math. Lett., 11(2), 85–89 (1998) · doi:10.1016/S0893-9659(98)00016-0
[19]Ding, X. P.: Coincidence theorems in topological spaces and their applications. Appl. Math. Lett., 12, 99–105 (1999) · Zbl 0942.54030 · doi:10.1016/S0893-9659(99)00108-1
[20]Ding, X. P.: Coincidence theorems and generalized equilibrium in topological spaces. Indian J. Pure. Appl. Math., 30(10), 1053–1062 (1999)
[21]Ding, X. P.: Coincidence theorems involving composites of acyclic mappings and applications. Acta. Math. Sci., 19(1), 53–61 (1999)
[22]Ding, X. P.: Coincidence theorems with applications to minimax inequalities, section theorem and best approximation in topological spaces. Nonlinear Studies, 7(2), 211–225 (2000)
[23]Deguire, P., Lassonde, M.: Familles s’electantes. Topol Methods Nonlinear Anal., 5, 261–296 (1995)
[24]Deguire, P., Tan, K. K., Yuan, G. X. Z.: The study of maximal elements, fixed point for L S -majorijed mappings and their applications to minimax and variational inequalities in product topological spaces. Nonlinear Anal., 37, 933–951 (1999) · Zbl 0930.47024 · doi:10.1016/S0362-546X(98)00084-4
[25]Ding, X. P.: Maximal elements for G B -majorized mappings in product G-convex spaces and application (II). Appl. Math. Mech., 24(6), 583–594 (2003)
[26]Lin, L. J., Yu, Z. T., Ansari, Q. H., Lai, L. P.: Fixed point and maximal theorems with applications to abstract economies and minimax in equalities. J. Math. Anal. Appl., 284(3), 636–671 (2002)
[27]Lin, L. J., Ansari, Q. H.: Collective fixed points and maximal elements with applications to abstract economies. J. Math. Anal., 296(2), 455–472 (2004) · Zbl 1051.54028 · doi:10.1016/j.jmaa.2004.03.067
[28]Ansari, Q. H., Idzik, A., Yao, J. C.: Coincidence and fixed points with applications. Topol Methods Nonlinear Anal., 15, 191–202 (2000)
[29]Lin, L. J.: System of coincidence theorems with applications. J. Math. Anal. Appl., 285(2), 408–418 (2003) · Zbl 1051.49004 · doi:10.1016/S0022-247X(03)00406-2
[30]Horvath, C. D.: Some results on multivalued mappings and inequalities without convexity, In Nonlinear and Convex Analysis, (Eds by Lin B L and Simons S), Marcel Dekker, 99–106, 1987
[31]Horvath, C. D.: Contractibility and general convexity. J. Math. Anal. Appl., 156, 341–357 (1991) · Zbl 0733.54011 · doi:10.1016/0022-247X(91)90402-L
[32]Park, S., Kim, H.: Coincidence theorems for admissible multifunctions on generalized convex spaces. J. Math. Anal. Appl., 197, 173–187 (1996) · Zbl 0851.54039 · doi:10.1006/jmaa.1996.0014
[33]Park, S., Kim, H.: Foundations of the KKM theory on generalized convex spaces. J. Math. Anal. Appl., 209, 551–571 (1997) · Zbl 0873.54048 · doi:10.1006/jmaa.1997.5388