zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Causal inference with general treatment regimes: Generalizing the propensity score. (English) Zbl 1117.62361
Summary: We develop the theoretical properties of the propensity function, which is a generalization of the propensity score of Rosenbaum and Rubin. Methods based on the propensity score have long been used for causal inference in observational studies; they are easy to use and can effectively reduce the bias caused by nonrandom treatment assignment. Although treatment regimes need not be binary in practice, the propensity score methods are generally confined to binary treatment scenarios. Two possible exceptions have been suggested for ordinal and categorical treatments. In this article we develop theory and methods that encompass all of these techniques and widen their applicability by allowing for arbitrary treatment regimes. We illustrate our propensity function methods by applying them to two datasets; we estimate the effect of smoking on medical expenditure and the effect of schooling on wages. We also conduct simulation studies to investigate the performance of our methods.
MSC:
62-99Statistics (MSC2000)