zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Space-time covariance functions. (English) Zbl 1117.62431
Summary: This work considers a number of properties of space-time covariance functions and how these relate to the spatial-temporal interactions of the process. First, it examines how the smoothness away from the origin of a space-time covariance function affects, for example, temporal correlations of spatial differences. Models that are not smoother away from the origin than they are at the origin, such as separable models, have a kind of discontinuity to certain correlations that one might wish to avoid in some circumstances. Smoothness away from the origin of a covariance function is shown to follow from the corresponding spectral density having derivatives with finite moments. These results are used to obtain a parametric class of spectral densities whose corresponding space-time covariance functions are infinitely differentiable away from the origin and that allows for essentially arbitrary and possibly different degrees of smoothness for the process in space and time. Second, this work considers models that are asymmetric in space-time; the covariance between site x at time t and site y at time s is different than the covariance between site x at time s and site y at time t. A general approach is described for generating asymmetric models from symmetric models by taking derivatives. Finally, the implications of a Markov assumption in time on space-time covariance functions for Gaussian processes are examined, and an explicit characterization of all such continuous covariance functions is given. Several of the new models described in this work are applied to wind data from Ireland.

MSC:
62-99Statistics (MSC2000)