zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fixed period of temporary immunity after run of anti-malicious software on computer nodes. (English) Zbl 1117.92052

Summary: An SIRS epidemic model has been developed with a fixed period of temporary immunity, following temporary recovery from the infection of malicious objects in place of an exponentially distributed period of temporary immunity. When a node is recovered from the infected class, it recovers temporarily, acquiring temporary immunity with probability p (0p1) and dies from the attack of malicious objects with probability (1-p). Temporary immunity is observed in the computer network when anti-malicious software is run after a node gets affected by malicious object(s).

The model consists of a set of integro-differential equations. The stability of the results is stated in terms of threshold parameters. It has been observed that the endemic equilibrium for this model may be unstable thus giving an example of a generalization which leads to new possibilities for the behavior of the model. Numerically it has been verified that the endemic equilibrium is not asymptotically stable for all parameter values.

MSC:
92D30Epidemiology
45J05Integro-ordinary differential equations
45M10Stability theory of integral equations