zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Actuator fault robust estimation and fault-tolerant control for a class of nonlinear descriptor systems. (English) Zbl 1117.93019
Summary: For Lipschitz nonlinear descriptor systems with bounded input disturbances, by solving a Lyapunov equation, a robust state-space observer is proposed to simultaneously estimate descriptor system states, actuator faults, their finite times derivatives, and attenuate input disturbances in any desired accuracy. The considered faults can be unbounded (provided that their qth derivatives are bounded), the present fault estimation approaches can handle a large class of faults. By using the estimates of descriptor states and faults, and the linear matrix inequality (LMI) technique, a fault-tolerant control scheme is worked out. The nonlinear fault-tolerant control system can be made solvable, causal, asymptotically stable, and attenuate input uncertainties in terms of the prescribed performance index. Only original coefficient matrices are used in the proposed state-space observers and fault-tolerant controllers; therefore, the present design approaches are preferable in applications. Finally, a numerical example is given to illustrate the design procedure and simulations demonstrate the efficiency of the proposed design.
93C10Nonlinear control systems
93C70Time-scale analysis and singular perturbations
93C15Control systems governed by ODE
93B35Sensitivity (robustness) of control systems
93D20Asymptotic stability of control systems