zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Open boundary control problem for Navier-Stokes equations including a free surface: adjoint sensitivity analysis. (English) Zbl 1118.49022
Summary: This paper develops the adjoint sensitivities to the free-surface barotropic Navier- Stokes equations in order to allow for the assimilation of measurements of currents and free-surface elevations into an unsteady flow solution by open-boundary control. To calculate a variation in a surface variable, a mapping is used in the vertical to shift the problem into a fixed domain. A variation is evaluated in the transformed space from the Jacobian matrix of the mapping. This variation is then mapped back into the original space where it completes a tangent linear model. The adjoint equations are derived using the scalar product formulas redefined for a domain with variable bounds. The method is demonstrated by application to an unsteady fluid flow in a one-dimensional open channel in which horizontal and vertical components of velocity are represented as well as the elevation of the free surface (a 2D vertical section model). This requires the proper treatment of open boundaries in both the forward and adjoint models. A particular application is to the construction of a fully three-dimensional coastal ocean model that allows assimilation of tidal elevation and current data. However, the results are general and can be applied in a wider context.
49K40Sensitivity, stability, well-posedness of optimal solutions
49N99Miscellaneous topics in calculus of variations