zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A globally stable saturated desired compensation adaptive robust control for linear motor systems with comparative experiments. (English) Zbl 1119.93028
Summary: The recently proposed saturated adaptive robust controller is integrated with desired trajectory compensation to achieve global stability with much improved tracking performance. The algorithm is tested on a linear motor drive system which has limited control effort and is subject to parametric uncertainties, unmodeled nonlinearities, and external disturbances. Global stability is achieved by employing back-stepping design with bounded (virtual) control input in each step. A guaranteed transient performance and final tracking accuracy is achieved by incorporating the well-developed adaptive robust controller with effective parameter identifier. Signal noise that affects the adaptation function is alleviated by replacing the noisy velocity signal with the cleaner position feedback. Furthermore, asymptotic output tracking can be achieved when only parametric uncertainties are present.
93B35Sensitivity (robustness) of control systems
93C10Nonlinear control systems
93C40Adaptive control systems