zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Post-processing posterior predictive p values. (English) Zbl 1120.62307
Summary: This article addresses issues of model criticism and model comparison in Bayesian contexts, and focuses on the use of the so-called posterior predictive p values (ppp). These involve a general discrepancy or conflict measure and depend on the prior, the model, and the data. They are used in statistical practice to quantify the degree of surprise or conflict in data and to compare different combinations of prior and model. The distribution of such ppp values is far from uniform however, as we demonstrate for different models, making their interpretation and comparison a difficult matter. We propose a natural calibration of the ppp values, where the resulting cppp values are uniform on the unit interval under model conditions. The cppp values, which in general rely on a double-simulation scheme for their computation, may then be used to assess and compare different priors and models. Our methods also make it possible to compare parametric and nonparametric model specifications, in that genuine ”measures of surprise” are put on the same canonical uniform scale. We illustrate our techniques for some applications to real data. We also present supplementing theoretical results on various properties of the ppp and cppp.
MSC:
62F15Bayesian inference