zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. (English) Zbl 1121.35115
A proof of the global well-posedness for the two-dimensional dissipative quasi-geostrophic equation is presented. The argument relies on a non-local maximum principle.

MSC:
35Q35PDEs in connection with fluid mechanics
76U05Rotating fluids
86A05Hydrology, hydrography, oceanography
References:
[1]Caffarelli, L., Vasseur, A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Preprint, math.AP/0608447
[2]Constantin, P.: Energy spectrum of quasigeostrophic turbulence. Phys. Rev. Lett. 89, 184501 (2002) · doi:10.1103/PhysRevLett.89.184501
[3]Constantin, P., Cordoba, D., Wu, J.: On the critical dissipative quasi-geostrophic equation. Dedicated to Professors Ciprian Foias and Roger Temam (Bloomington, IN, 2000). Indiana Univ. Math. J. 50, 97–107 (2001)
[4]Constantin, P., Majda, A., Tabak, E.: Formation of strong fronts in the 2D quasi-geostrophic thermal active scalar. Nonlinearity 7, 1495–1533 (1994) · Zbl 0809.35057 · doi:10.1088/0951-7715/7/6/001
[5]Constantin, P., Wu, J.: Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30, 937–948 (1999) · Zbl 0957.76093 · doi:10.1137/S0036141098337333
[6]Cordoba, A., Cordoba, D.: A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys. 249, 511–528 (2004) · Zbl 02158321 · doi:10.1007/s00220-004-1055-1
[7]Kiselev, A., Nazarov, F., Shterenberg, R.: On blow up and regularity in dissipative Burgers equation. In preparation
[8]Resnick, S.: Dynamical problems in nonlinear advective partial differential equations. Ph.D. Thesis, University of Chicago, 1995
[9]Wu, J.: The quasi-geostrophic equation and its two regularizations. Commun. Partial Differ. Equations 27, 1161–1181 (2002) · Zbl 1012.35067 · doi:10.1081/PDE-120004898