zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stability of Gabor frames with arbitrary sampling points. (English) Zbl 1121.42021
Summary: We study the stability of Gabor frames with arbitrary sampling points in the time-frequency plane, in several aspects. We prove that a Gabor frame generated by a window function in the Segal algebra S 0 ( d ) remains a frame even if (possibly) all the sampling points undergo an arbitrary perturbation, as long as this is uniformly small. We give explicit stability bounds when the window function is nice enough, showing that the allowed perturbation depends only on the lower frame bound of the original family and some qualitative parameters of the window under consideration. For the perturbation of window functions we show that a Gabor frame generated by any window function with arbitrary sampling points remains a frame when the window function has a small perturbation in S 0 ( d ) sense. We also study the stability of dual frames, which is useful in practice but has not found much attention in the literature. We give some general results on this topic and explain consequences to Gabor frames.
MSC:
42C15General harmonic expansions, frames
42C40Wavelets and other special systems
65T60Wavelets (numerical methods)