zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Generalized Cauchy-Riemann lightlike submanifolds of Kaehler manifolds. (English) Zbl 1121.53022
This paper introduces and studies a class of lightlike submanifolds in indefinite Kähler manifolds. This class, called generalized Cauchy–Riemann (GCR) submanifolds, contains Cauchy–Riemann and so called Screen Cauchy–Riemann submanifolds. In an introductory section, the authors recall some facts on lightlike submanifolds in pseudo–Riemannian manifolds. Next, they introduce the class of GCR–lightlike submanifolds in indefinite Kähler manifolds and study its relation to other classes of lightlike submanifolds. They prove some results on GCR–lightlike submanifolds which in addition are totally umbilical or minimal.

53C15Differential geometric structures on manifolds
53C40Global submanifolds (differential geometry)
53C50Lorentz manifolds, manifolds with indefinite metrics