zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Algorithms for numerical solution of the modified equal width wave equation using collocation method. (English) Zbl 1121.65107
Summary: Quintic B-spline collocation algorithms for numerical solution of the modified equal width wave (MEW) equation are proposed. The algorithms are based on Crank-Nicolson formulation for time integration and quintic B-spline functions for space integration. Quintic B-spline collocation method over the finite intervals is also applied to the time split MEW equation and space split MEW equation. Results for the three algorithms are compared by studying the propagation of the solitary wave, interaction of the solitary waves, wave generation and birth of solitons.
MSC:
65M70Spectral, collocation and related methods (IVP of PDE)
65M06Finite difference methods (IVP of PDE)
35L75Nonlinear hyperbolic PDE of higher (>2) order
35Q51Soliton-like equations