zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Cost-sensitive boosting for classification of imbalanced data. (English) Zbl 1122.68505
Summary: Classification of data with imbalanced class distribution has posed a significant drawback of the performance attainable by most standard classifier learning algorithms, which assume a relatively balanced class distribution and equal misclassification costs. The significant difficulty and frequent occurrence of the class imbalance problem indicate the need for extra research efforts. The objective of this paper is to investigate meta-techniques applicable to most classifier learning algorithms, with the aim to advance the classification of imbalanced data. The AdaBoost algorithm is reported as a successful meta-technique for improving classification accuracy. The insight gained from a comprehensive analysis of the AdaBoost algorithm in terms of its advantages and shortcomings in tacking the class imbalance problem leads to the exploration of three cost-sensitive boosting algorithms, which are developed by introducing cost items into the learning framework of AdaBoost. Further analysis shows that one of the proposed algorithms tallies with the stagewise additive modelling in statistics to minimize the cost exponential loss. These boosting algorithms are also studied with respect to their weighting strategies towards different types of samples, and their effectiveness in identifying rare cases through experiments on several real world medical data sets, where the class imbalance problem prevails.
MSC:
68T05Learning and adaptive systems
68W05Nonnumerical algorithms
68P15Database theory
68T10Pattern recognition, speech recognition