zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality. (English) Zbl 1123.93074
Summary: This paper provides a new analytical robust stability checking method of fractional-order linear time invariant interval uncertain system. This paper continues the authors’ previous work [Y. Chen, H. Ahn and I. Podlubny, Robust stability check of fractional-order linear time invariant systems with interval uncertainties, in: Proc. IEEE Conf. Mechatronics Autom., Niagara Falls, Canada, 210–215 (2005)] where matrix perturbation theory was used. For the new robust stability checking, Lyapunov inequality is utilized for finding the maximum eigenvalue of a Hermitian matrix. Through numerical examples, the usefulness and the effectiveness of the newly proposed method are verified.
93D09Robust stability of control systems
93C25Control systems in abstract spaces
93C05Linear control systems