zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the collision local time of fractional Brownian motions. (English) Zbl 1124.60036
Summary: The existence and smoothness of the collision local time are proved for two independent fractional Brownian motions, through L 2 convergence and chaos expansion. Furthermore, the regularity of the collision local time process is studied.

MSC:
60G15Gaussian processes
60G18Self-similar processes
References:
[1]Rosen, J., The intersection local time of fractional Brownian motion in the plane, J. Multivariate Anal., 23(1), 1987, 37–46 · Zbl 0633.60057 · doi:10.1016/0047-259X(87)90176-X
[2]Nualart, D. and Vives, J., Chaos expansion and local time, Publ. Mat., 36(2), 1992, 827–836
[3]Imkeller, P., Abreu, V. and Vives, J., Chaos expansions of double intersection local time of Brownian motion in Rd and renormalization, Stoch Process. Appl., 56, 1995, 1–34 · Zbl 0822.60048 · doi:10.1016/0304-4149(94)00041-Q
[4]Hu, Y. Z., Self-intersection of fractional Brownian motions – via chaos expansion, J. Math Kyoto Univ., 41(2), 2001, 233–250
[5]Hu, Y. Z. and Nualart, D., Renormalized Self-intersection local time for fractional Brownian motion, Ann. Prob., 33(3), 2005, 948–983 · Zbl 1093.60017 · doi:10.1214/009117905000000017
[6]Xiao, Y. M. and Zhang, T. S., Local time of fractional Brownian sheets, Probab. Theory Relat. Fields, 124, 2002, 121–139 · Zbl 1009.60024 · doi:10.1007/s004400200210
[7]Simon, B., The P(_)2 Euclidean Field Theory, Princeton University Press, Princeton, New Jersey, 1974
[8]Meyer, P. A., Quantum for Probabilists, Lecture Notes in Mathematics, 1538, Springer, Heidelberg, 1993
[9]Watanabe, S., Stochastic Di_eretial Equation and Malliavin Calculus, Tata Institute of Fundamental Research, Springer, New York, 1984
[10]Berman, S. M., Local nondeterminism and local times of Gaussian processes, Indiana Univ. Math. J., 23, 1973, 69–94 · Zbl 0264.60024 · doi:10.1512/iumj.1973.23.23006
[11]Xiao, Y. M., Properties of local nondeterminism of Gaussian and stable random fields and their applications, Ann. Fac. Sci. Toulouse Math., XV, 2006, 157–193