zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Parallel machine scheduling with a convex resource consumption function. (English) Zbl 1125.90023
Summary: We consider some problems of scheduling jobs on identical parallel machines where job-processing times are controllable through the allocation of a nonrenewable common limited resource. The objective is to assign the jobs to the machines, to sequence the jobs on each machine and to allocate the resource so that the makespan or the sum of completion times is minimized. The optimization is done for both preemptive and nonpreemptive jobs. For the makespan problem with nonpreemptive jobs we apply the equivalent load method in order to allocate the resources, and thereby reduce the problem to a combinatorial one. The reduced problem is shown to be NP-hard. If preemptive jobs are allowed, the makespan problem is shown to be solvable in O(n 2 ) time. Some special cases of this problem with precedence constraints are presented and the problem of minimizing the sum of completion times is shown to be solvable in O(nlogn) time.
MSC:
90B35Scheduling theory, deterministic
90C60Abstract computational complexity for mathematical programming problems