zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Network traffic analysis using singular value decomposition and multiscale transforms. (English) Zbl 1126.68010
Summary: The present work integrates the multiscale transform provided by the wavelets and Singular Value Decomposition (SVD) for the detection of anomaly in self-similar network data. The algorithm proposed in this paper uses the properties of SVD of a matrix whose elements are local energies of wavelet coefficients at different scales. Unlike existing techniques, our method determines both the presence (i.e., the time intervals in which anomaly occurs) and the nature of anomaly (i.e., anomaly of bursty type, long or short duration, etc.) in network data. It uses the diagonal, left and right singular matrices obtained in SVD to determine the number of scales of self-similarity, location and scales of anomaly in data, respectively. Our simulation work on different data sets demonstrates that the method performs better than the existing anomaly detection methods proposed for self-similar data.
MSC:
68M10Network design and communication of computer systems