zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Finite element error analysis of a variational multiscale method for the Navier-Stokes equations. (English) Zbl 1126.76030
Summary: The paper presents error estimates of a finite element variational multiscale method for incompressible Navier-Stokes equations. The constants in these estimates do not depend on the Reynolds number but on a reduced Reynolds number or on the mesh size of a coarse mesh.
MSC:
76M10Finite element methods (fluid mechanics)
76D05Navier-Stokes equations (fluid dynamics)
65M15Error bounds (IVP of PDE)
65M30Improperly posed problems (IVP of PDE, numerical methods)
References:
[1]R.A. Adams, Sobolev Spaces (Academic, New York, 1975).
[2]I. Babuška and J. Osborn, Analysis of finite element methods for second order boundary value problems using mesh dependent norms, Numer. Math. 34 (1980) 41–62. · Zbl 0404.65055 · doi:10.1007/BF01463997
[3]L.C. Berselli, C.R. Grisanti and V. John, On commutation errors in the derivation of the space averaged Navier–Stokes equations, Preprint 12, Università di Pisa, Dipartimento di Matematica Applicata ”U.Dini,” 2004.
[4]L.C. Berselli and V. John, On the comparison of a commutation error and the Reynolds stress tensor for flows obeying a wall law, Preprint 18, Università di Pisa, Dipartimento di Matematica Applicata ”U.Dini,” 2004.
[5]S.S. Collis, Monitoring unresolved scales in multiscale turbulence modeling, Phys. Fluids 13 (2001) 1800–1806. · Zbl 1184.76110 · doi:10.1063/1.1367872
[6]A. Dunca, V. John and W.J. Layton, The commutation error of the space averaged Navier–Stokes equations on a bounded domain, in: Contributions to Current Challenges in Mathematical Fluid Mechanics, eds. J.G. Heywood, G.P. Galdi and R. Rannacher (Birkhäuser, 2004) pp. 53–78.
[7]G.P. Galdi, An introduction to the Navier–Stokes initial-boundary value problem, in: Fundamental Directions in Mathematical Fluid Dynamics, eds. G.P. Galdi, J.G. Heywood and R. Rannacher (Birkhäuser, 2000) pp. 1–70.
[8]V. Gravemeier, The variational multiscale method for laminar and turbulent incompressible flow, PhD thesis, Institute of Structural Mechanics, University of Stuttgart, 2003.
[9]J.-L. Guermond, Stabilization of Galerkin approximations of transport equations by subgrid modeling, M2AN 33 (1999) 1293–1316. · Zbl 0946.65112 · doi:10.1051/m2an:1999145
[10]J.G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier–Stokes problem I: Regularity of solutions and second order error estimates for spatial discretization, SIAM J. Numer. Anal. 19 (1982) 275–311. · Zbl 0487.76035 · doi:10.1137/0719018
[11]J.G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier–Stokes problem III: Smoothing property and higher order estimates for spatial discretization, SIAM J. Num. Anal. 25 (1988) 489–512. · Zbl 0646.76036 · doi:10.1137/0725032
[12]T.J. Hughes, L. Mazzei and K.E. Jansen, Large eddy simulation and the variational multiscale method, Comput. Vis. Sci. 3 (2000) 47–59. · Zbl 0998.76040 · doi:10.1007/s007910050051
[13]T.J.R. Hughes, Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid-scale models, bubbles and the origin of stabilized methods, Comput. Methods Appl. Mech. Eng. 127 (1995) 387–401. · Zbl 0866.76044 · doi:10.1016/0045-7825(95)00844-9
[14]V. John, Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical Results for a Class of LES Models, volume 34 of Lecture Notes in Computational Science and Engineering, (Springer, Berlin Heidelberg New York, 2004).
[15]V. John and S. Kaya, A finite element variational multiscale method for the Navier–Stokes equations, SIAM J. Sci. Comput. 26 (2005) 1485–1503. · Zbl 1073.76054 · doi:10.1137/030601533
[16]V. John, S. Kaya and W. Layton, A two-level variational multiscale method for convection–diffusion equations, Comp. Meth. Appl. Math. Engrg. (2006) in press.
[17]V. John and W.J. Layton, Analysis of numerical errors in large eddy simulation, SIAM J. Numer. Anal. 40 (2002) 995–1020. · Zbl 1026.76028 · doi:10.1137/S0036142900375554
[18]W. Layton and W. Lenferink, A multilevel mesh independence principle for the Navier–Stokes equations, SIAM J. Numer. Anal. 33 (1996) 17–30. · Zbl 0844.76053 · doi:10.1137/0733002
[19]W. Layton and L. Tobiska, A two-level method with backtracking for the Navier–Stokes equations, SIAM J. Numer. Anal. 35(5) (1998) 2035–2054. · Zbl 0913.76050 · doi:10.1137/S003614299630230X
[20]P. Sagaut, Large Eddy Simulation for Incompressible Flows, 2nd edition (Springer, Berlin Heidelberg New York, 2003).
[21]H. Sohr, The Navier-Stokes Equations, An Elementary Functional Analytic Approach. Birhäuser Advanced Texts (Birkhäuser Verlag Basel, Boston, Berlin, 2001).
[22]R. Temam, Navier–Stokes Equations. Theory and Numerical Analysis, volume 2 of Studies in Mathematics and Its Applications (North-Holland, Amsterdam, New York, Oxford, 1977).
[23]F. van der Bos and B.J. Geurts, Commutator erros in the filtering approach to large-eddy simulation, Phys. Fluids 17 (2005) 035108. · Zbl 1187.76536 · doi:10.1063/1.1852579
[24]J. Xu, A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput. 15(1) (1994) 231–237. · Zbl 0795.65077 · doi:10.1137/0915016
[25]J. Xu, Two-grid finite element discretizations for nonlinear p.d.e.’s, SIAM J. Numer. Anal. 33(5) (1996) 1759–1777. · Zbl 0860.65119 · doi:10.1137/S0036142992232949