zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Learning theory estimates via integral operators and their approximations. (English) Zbl 1127.68088
Summary: The regression problem in learning theory is investigated with least square Tikhonov regularization schemes in Reproducing Kernel Hilbert Spaces (RKHS). We follow our previous work and apply the sampling operator to the error analysis in both the RKHS norm and the L 2 norm. The tool for estimating the sample error is a Bennet inequality for random variables with values in Hilbert spaces. By taking the Hilbert space to be the one consisting of Hilbert-Schmidt operators in the RKHS, we improve the error bounds in the L 2 metric, motivated by an idea of Caponnetto and de Vito. The error bounds we derive in the RKHS norm, together with a Tsybakov function we discuss here, yield interesting applications to the error analysis of the (binary) classification problem, since the RKHS metric controls the one for the uniform convergence.
68T05Learning and adaptive systems
94A20Sampling theory
42B10Fourier type transforms, several variables
46E22Hilbert spaces with reproducing kernels
62H30Classification and discrimination; cluster analysis (statistics)