zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global convergence of a modified BFGS-type method for unconstrained non-convex minimization. (English) Zbl 1128.65040
Authors’ summary: To the unconstrained programming of a non-convex function, this article gives a modified Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm associated with the general line search model. The idea of the algorithm is to modify the approximate Hessian matrix for obtaining the descent direction and guaranteeing the efficiency of the new quasi-Newton iteration equation B k+1 s k =y k * , where y k * is the sum of y k and A k s k , and A k is some matrix. The global convergence properties of the algorithm associating with the general form of line search is proved.
MSC:
65K05Mathematical programming (numerical methods)
90C26Nonconvex programming, global optimization
References:
[1]J. J. Dennis, J. J. Moré,Quasi-Newton methods, motivation and theory, SIAM REIEW19 (1977) 46–89. · Zbl 0356.65041 · doi:10.1137/1019005
[2]M. J. D. Powell,Some Global Convergence Properties of a Variable Metric Algorithm for Minimization without Exact Line Searches, Nonlinear Programming, SIAM-AMS proceedings Cottle R W and Lemke C E, eds.9 (1976), 53–72.
[3]J. Werner,Uber die global konvergenze von variablemetric verfahren mit nichtexakter schrittweitenbestimmong, Numer. Math.31 (1978) 321–334. · Zbl 0427.65047 · doi:10.1007/BF01397884
[4]Walter F. Mascarenhas,The BFGS method with exact line searches fails for non-convex objective functions, Math. Program.99 (2004) 49C61. · Zbl 1082.90108 · doi:10.1007/s10107-003-0421-7
[5]J. D. Pearson,Variable Metric Methods of Minimization, Computer J.12 (1969) 171–178. · Zbl 0207.17301 · doi:10.1093/comjnl/12.2.171
[6]Han and Liu,General Form of Stepsize Selection Rules of Linesearch and Relevant Analysis of Global Convergence of BFGS Algorithm (Chinese), Acta Mathematicae Appliatae Sinica1 (1995) 112–122.
[7]L. Armijo,Minimization of functions having lipschitz-continuous first partial derivatives, Pacific J. of Mathematics,16 1-3.
[8]A. Goldstein, and J. Price,An effective algorithm for minimization, Numericahe Mathematik10 (1967) 184–189. · Zbl 0161.35402 · doi:10.1007/BF02162162
[9]P. Wolfe,Convergence conditions for ascent methods, SIAM Review11 (1969) 226–235. · Zbl 0177.20603 · doi:10.1137/1011036
[10]J. G. Liu, Q. Guo,Global Convergence Properties of the Modified BFGS Method, J. of Appl. Math. & Computing16 (2004) 195–205. · Zbl 1065.65077 · doi:10.1007/BF02936161
[11]J. G. Liu, Z. Q. Xia, R. D. Ge, and Q. Guo,An modified BFGS method for non-convex minimization problems (Chinese), Operation Research and Management13 (2004) 62–65.
[12]Z. X. Wei, G. H. Yu, G. L. Yuan, Z. G. Lian,The superlinear convergence of a modifed BFGS-Type method for unconstrained optimization, Computational optimization and applications29 (2004) 315–332. · Zbl 1070.90089 · doi:10.1023/B:COAP.0000044184.25410.39
[13]Z. Wei, G. Li, and L. Qi,New quasi-Newton methods for unconstrained optimization probelms, to appear in mathematical programming.(search the paper).
[14]Z. Wei, L. Qi, and X. Chen,An SQP-type method and its application in stochastic programming, J. Optim. Theory Appl.116 (2003) 205–228. · Zbl 1030.90142 · doi:10.1023/A:1022122521816
[15]Rendong Ge and Zunquan Xia,An ABS Algorithm for Solving Singular Nonlinear System with Rank One Defect, J. Appl. Math. and Computing(old:KJCAM)9 (2002) 167–184.
[16]Rendong Ge and Zunquan Xia,An ABS Algorithm for Solving Singular Nonlinear System with Rank Defects, J. of Appl. Math. & Computing12 (2003) 1–20. · Zbl 1057.65024 · doi:10.1007/BF02936177