zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Effective preprocessing in SAT through variable and clause elimination. (English) Zbl 1128.68463
Bacchus, Fahiem (ed.) et al., Theory and applications of satisfiability testing. 8th international conference, SAT 2005, St Andrews, UK, June 19–23, 2005. Proceedings. Berlin: Springer (ISBN 3-540-26276-8/pbk). Lecture Notes in Computer Science 3569, 61-75 (2005).
Summary: Preprocessing SAT instances can reduce their size considerably. We combine variable elimination with subsumption and self-subsuming resolution, and show that these techniques not only shrink the formula further than previous preprocessing efforts based on variable elimination, but also decrease runtime of SAT solvers substantially for typical industrial SAT problems. We discuss critical implementation details that make the reduction procedure fast enough to be practical.
MSC:
68T20AI problem solving (heuristics, search strategies, etc.)
68T15Theorem proving (deduction, resolution, etc.)
Software:
NiVER; MiniSat