zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust H control for a class of nonlinear stochastic systems with mixed time delay. (English) Zbl 1128.93015
Summary: This paper is concerned with the problem of robust H control for a class of uncertain nonlinear Itô-type stochastic systems with mixed time delays. The parameter uncertainties are assumed to be norm bounded, the mixed time delays comprise both the discrete and distributed delays, and the sector nonlinearities appear in both the system states and delayed states. The problem addressed is the design of a linear state feedback controller such that, in the simultaneous presence of parameter uncertainties, system nonlinearities and mixed time delays, the resulting closed-loop system is asymptotically stable in the mean square and also achieves a prescribed H disturbance rejection attenuation level. By using the Lyapunov stability theory and the Itô differential rule, some new techniques are developed to derive the sufficient conditions guaranteeing the existence of the desired feedback controllers. A unified linear matrix inequality is proposed to deal with the problem under consideration and a numerical example is exploited to show the usefulness of the results obtained.
MSC:
93B35Sensitivity (robustness) of control systems
93B36H -control
93E03General theory of stochastic systems
93C10Nonlinear control systems
93C41Control problems with incomplete information
93B52Feedback control
93E15Stochastic stability
93D05Lyapunov and other classical stabilities of control systems