zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Kernel shapes of fuzzy sets in fuzzy systems for function approximation. (English) Zbl 1128.93035
Summary: The shapes of if-part fuzzy sets affect the approximating capability of fuzzy systems. In this paper, the fuzzy systems with the kernel-shaped if-part fuzzy sets are built directly from the training data. It is proved that these fuzzy systems are universal approximators and their uniform approximation rates can be estimated in the single-input-single-output (SISO) case. On the basis of these rates, the relationships between the approximating capability and the shapes of if-part fuzzy sets are developed for the fuzzy systems. Furthermore, the sinc functions that serve as input membership functions are proved to have the almost best approximation property in a particular class of membership functions. The theoretical results are confirmed from the simulation data. In addition, the estimations of the uniform approximation rates are extended to the multi-input-single-output (MISO) case.
MSC:
93C42Fuzzy control systems
03E72Fuzzy set theory
References:
[1]Buckley, J. J.: Sugeno type controllers are universal controllers, Fuzzy sets and systems 53, 299-304 (1993) · Zbl 0785.93057 · doi:10.1016/0165-0114(93)90401-3
[2]Bauer, P.; Klement, E. P.; Leikermoser, A.; Moser, B.: Modeling of control functions by fuzzy controllers, Theoretical aspects of fuzzy control, 91-116 (1995) · Zbl 0851.93038
[3]Butzer, P. L.; Nessel, R. J.: Fourier analysis and approximation, Fourier analysis and approximation 1 (1971) · Zbl 0217.42603
[4]Campello, R. J. G.B.; Do Amaral, W. Caradori: Hierarchical fuzzy relational models: linguistic interpretation and universal approximation, IEEE transactions on fuzzy systems 14, No. 3, 446-453 (2006)
[5]Castro, J. L.: Fuzzy logic controllers are universal approximators, IEEE transactions on SMC 25, 629-635 (1995)
[6]Cao, S. G.; Rees, N. W.; Feng, G.: Universal fuzzy controllers for a class of nonlinear systems, Fuzzy sets and systems 122, 117-123 (2001) · Zbl 0980.93038 · doi:10.1016/S0165-0114(00)00020-8
[7]Devore, R. A.: Nonlinear approximation, Acta numerica 7, 51-150 (1998) · Zbl 0931.65007
[8]Dvoretzky, A.; Kiefer, J.; Wolfowitz, J.: Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator, Annals of mathematical statistics 27, 642-669 (1956) · Zbl 0073.14603 · doi:10.1214/aoms/1177728174
[9]Ding, H. S.; Mao, J. Q.: Development of approximation theory of fuzzy systems, Journal of system simulation 18, No. 8, 2061-2066 (2006)
[10]Ding, Y. S.; Ying, H.; Shao, S. H.: Necessary conditions on minimal system configuration for general MISO mamdani fuzzy systems as universal approximators, IEEE transactions on SMC, part B 30, No. 6, 857-864 (2000)
[11]Hassine, R.; Karray, F.; Alimi, A. M.; Selmi, M.: Approximation properties of fuzzy systems for smooth functions and their first-order derivative, IEEE transactions on SMC, part A 33, No. 2, 160-168 (2003)
[12]Kim, H. M.; Mendel, J. M.: Fuzzy basis functions: comparisons with other basis functions, IEEE transactions on fuzzy systems 3, No. 2, 158-168 (1995)
[13]Klement, E. P.; Koczy, L. T.; Moser, B.: Are fuzzy systems universal approximators, International journal of general systems 28, No. 2 – 3, 259-282 (1999) · Zbl 0936.93034 · doi:10.1080/03081079908935238
[14]Koczy, L. T.; Zorat, A.: Fuzzy systems and approximation, Fuzzy sets and systems 85, 203-222 (1997)
[15]B. Kosko, Fuzzy systems as universal approximators, in: Proceedings of the IEEE International Conference on Fuzzy Systems, San Diego, 1992, pp. 1153 – 1162.
[16]Kosko, B.: Fuzzy systems as universal approximators, IEEE transactions on computers 43, No. 11, 1329-1333 (1994) · Zbl 1057.68664 · doi:10.1109/12.324566
[17]Kosko, B.: Fuzzy engineering, (1996)
[18]S. Mitaim, B. Kosko, What is the best shape for a fuzzy set in function approximation? in: Proceedings of the 5th IEEE International Conference on Fuzzy Systems (FUZZ-96), vol. 2, 1996, pp. 1237 – 1243.
[19]Mitaim, S.; Kosko, B.: The shape of fuzzy sets in adaptive function approximation, IEEE transactions on fuzzy systems 9, No. 4, 637-656 (2001)
[20]Lee, I.; Kosko, B.; Anderson, W. F.: Modeling gunshot bruises in soft body armor with an adaptive fuzzy system, IEEE transactions on systems, man, and cybernetics – part B: cybernetcis 35, No. 6, 1374-1390 (2005)
[21]Li, Y. M.; Shi, Z. K.; Li, Z. H.: Approximation theory of fuzzy systems based upon genuine many-valued implications – SISO cases, Fuzzy sets and systems 130, 147-157 (2002) · Zbl 1017.93056 · doi:10.1016/S0165-0114(01)00166-X
[22]Liu, P. Y.: Analysis of approximation of continuous fuzzy functions by multivariate fuzzy polynomials, Fuzzy sets and systems 127, 299-313 (2002) · Zbl 1011.41009 · doi:10.1016/S0165-0114(01)00079-3
[23]Liu, P. Y.; Li, H. X.: Hierarchical TS fuzzy system and its universal approximation, Information sciences 169, 279-303 (2005) · Zbl 1068.93034 · doi:10.1016/j.ins.2004.04.008
[24]Moser, B.: Sugeno controllers with a bounded number of rules are nowhere dense, Fuzzy sets and systems 104, No. 2, 269-277 (1999) · Zbl 0938.93035 · doi:10.1016/S0165-0114(97)00220-0
[25]Miao, Z. H.; Li, H. X.: Approximation problem of a class of fuzzy systems, Journal of Beijing normal university (Natural science) 36, No. 1, 14-20 (2000) · Zbl 1094.26512
[26]M.E. Moghaddam, M. Jamzad, Linear motion blur parameter estimation in noisy images using fuzzy sets and power spectrum, EURASIP Journal on Advances in Signal Processing, vol. 2007, Article ID 68985, 2007, 8 p. doi:10.1155/2007/68985.
[27]Oliveira, J. V. D.: Semantics constraints for membership function optimization, IEEE transactions on systems, man, and cybernetics – part A 29, No. 1, 128-138 (1999)
[28]Pedrycz, W.: Why triangular membership functions?, Fuzzy sets and systems 64, 21-30 (1994)
[29]Pedrycz, W.; Oliveira, J. V. D.: Optimization of fuzzy models, IEEE transactions on systems, man, and cybernetics – part B 26, No. 4, 627-636 (1996)
[30]Pedrycz, W.; Vasilakos, A. V.: Linguistic models and linguistic modeling, IEEE transactions on systems, man, and cybernetics – part B 29, No. 6, 745-757 (1999)
[31]Pedrycz, W.; Gomide, F.: Fuzzy systems engineering: toward human-centric computing, (2007)
[32]Peng, J. Y.; Li, H. X.; Hou, J.; You, F.; Wang, J. Y.: Fuzzy controllers based on pointwise optimaization fuzzy inference and its interplation mechanism, Journal of systems science and mathematics 25, No. 3, 311-322 (2005) · Zbl 1108.93052
[33]Rao, B. L. S. Prakasa: Nonparametric functional estimation, (1983)
[34]Specht, D. F.: Probabilistic neural networks, Neural networks 3, 109-118 (1990)
[35]Specht, D. F.: A general regression neural network, IEEE transactions on nueral networks 2, No. 6, 568-576 (1991)
[36]Tikk, D.: On nowhere denseness of certain fuzzy controllers containing prerestricted number of rules, On nowhere denseness of certain fuzzy controllers containing prerestricted number of rules 16 (1999) · Zbl 0953.93046
[37]Tikk, D.: Notes on the approximation rate of fuzzy KH interpolators, Fuzzy sets and systems 138, 441-453 (2003) · Zbl 1066.93032 · doi:10.1016/S0165-0114(02)00387-1
[38]Tikk, D.; Koczy, L. T.; Gedeon, T. D.: A survey on the universal approximation and its limits in soft computing techniques, International journal of approximate reasoning 33, No. 2, 185-202 (2003) · Zbl 1045.68113 · doi:10.1016/S0888-613X(03)00021-5
[39]Vuorimaa, P.: Fuzzy self-organizing map, Fuzzy sets and systems 66, No. 2, 223-231 (1994)
[40]H. Wang, J. Xiao, T-S fuzzy system based on multi-resolution analysis and its function approximation, in: Proceedings of the 5th World Congress on Intelligent Control and Automation, June 15 – 19, Hangzhou, PR China, 2004, pp. 244 – 249.
[41]Wang, L. X.; Mendel, J. M.: Fuzzy basis functions, universal approximation, and orthogonal least squares learning, IEEE transactions on neural networks 3, No. 5, 807-814 (1992)
[42]Wang, L. X.: A course in fuzzy systems and control, (1997) · Zbl 0910.93002
[43]Wei, C.; Wang, L. X.: A note on universal approximation by hierarchical fuzzy systems, Information sciences 123, 241-248 (2000) · Zbl 0960.93029 · doi:10.1016/S0020-0255(99)00126-7
[44]Ying, H.: Sufficient conditions on general fuzzy systems as function approximations, Automatica 30, No. 3, 521-525 (1994) · Zbl 0800.93708 · doi:10.1016/0005-1098(94)90130-9
[45]Ying, H.: General SISO Takagi – sugeno fuzzy systems with linear rule consequents are universal approximators, IEEE transactions on fuzzy systems 6, No. 4, 582-587 (1998)
[46]Ying, H.: Sufficient conditions on uniform approximation of multivariate functions by general Takagi – sugeno fuzzy systems with linear rule consequents, IEEE transactions on SMC, part A 28, No. 4, 515-520 (1998)
[47]Ying, H.: General Takagi – sugeno fuzzy systems with simplified linear rule consequents are universal controllers, models and filters, Information sciences 108, 91-107 (1998) · Zbl 0928.93034 · doi:10.1016/S0020-0255(97)10058-5
[48]Yager, R. R.; Kreinovich, V.: Universal approximation theorem for uninorm-based fuzzy systems modeling, Fuzzy sets and systems 140, 331-339 (2003) · Zbl 1040.93043 · doi:10.1016/S0165-0114(02)00521-3
[49]Zeng, X. J.; Singh, M. G.: Approximation theory of fuzzy systems-SISO case, IEEE transactions on fuzzy systems 2, No. 2, 162-176 (1994)
[50]Zeng, X. J.; Singh, M. G.: Approximation theory of fuzzy systems-MIMO case, IEEE transactions on fuzzy systems 3, No. 2, 219-235 (1995)
[51]Zeng, X. J.; Singh, M. G.: Approximation accuracy analysis of fuzzy systems as function approximators, IEEE transactions on fuzzy systems 4, No. 1, 44-63 (1996)
[52]Zeng, X. J.; Singh, M. G.: A relationship between membership functions and approximation accuracy in fuzzy systems, IEEE transactions on SMC, part B 26, No. 1, 176-180 (1996)
[53]Zeng, K.; Zhang, N. Y.; Xu, W. L.: A comparative study on sufficient conditions for Takagi – sugeno fuzzy systems as universal approximators, IEEE transactions on fuzzy systems 8, No. 6, 773-780 (2000)
[54]Zhang, Y. Z.; Li, H. X.: Generalized hierarchical mamdani fuzzy systems and their universal approximation, Control theory and applications 23, No. 3, 439-454 (2006) · Zbl 1187.93086