zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Proximal alternating directions method for structured variational inequalities. (English) Zbl 1129.49040
Summary: In the alternating directions method, the relaxation factor γ(0,5+1 2) by Glowinski is useful in practical computations for structured variational inequalities. This paper points out that the same restriction region of the relaxation factor is also valid in the proximal alternating directions method.
MSC:
49M30Other numerical methods in calculus of variations
49J40Variational methods including variational inequalities
47J20Inequalities involving nonlinear operators
References:
[1]Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984)
[2]Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM Studies in Applied Mathematics, Philadelphia (1989)
[3]Eckstein, J.: Some saddle-function splitting methods for convex programming. Optim. Methods Softw. 4, 75–83 (1994) · doi:10.1080/10556789408805578
[4]Eckstein, J., Fukushima, M.: Some reformulation and applications of the alternating direction method of multipliers. In: Hager, W.W. (ed.), Large Scale Optimization: State of the Art. Kluwer Academic, Dordrecht (1994)
[5]Fukushima, M.: Application of the alternating direction method of multipliers to separable convex programming problems. Comput. Optim. Appl. 2, 93–111 (1992)
[6]He, B.S., Yang, H.: Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities. Oper. Res. Lett. 23, 151–161 (1998) · Zbl 0963.49006 · doi:10.1016/S0167-6377(98)00044-3
[7]Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite-element approximations. Comput. Math. Appl. 2, 17–40 (1976) · Zbl 0352.65034 · doi:10.1016/0898-1221(76)90003-1
[8]Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrange Methods: Applications to the Solution of Boundary-valued Problems, pp. 299–331. North Holland, Amsterdam (1983)
[9]Kontogiorgis, S., Meyer, R.R.: A variable-penalty alternating directions method for convex optimization. Math. Program. 83, 29–53 (1998)
[10]Teboulle, M.: Convergence of proximal-like algorithms. SIAM J. Optim. 7, 1069–1083 (1997) · Zbl 0890.90151 · doi:10.1137/S1052623495292130
[11]Tseng, P.: Applications of splitting algorithm to decomposition in convex programming and variational inequalities. SIAM J. Control Optim. 29, 119–138 (1991) · Zbl 0737.90048 · doi:10.1137/0329006
[12]He, B.S., Wang, S.L., Yang, H.: A modified variable-penalty alternating directions method for monotone variational inequalities. J. Comput. Math. 21, 495–504 (2003)
[13]Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976) · Zbl 0358.90053 · doi:10.1137/0314056
[14]Martinet, B.: Regularization d’inequations variationelles par approximations sucessives. Rev. Francaise Inform. Rech. Oper. 4, 154–159 (1970)