zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Optimal rates for the regularized least-squares algorithm. (English) Zbl 1129.68058
Summary: We develop a theoretical analysis of the performance of the regularized least-square algorithm on a reproducing kernel Hilbert space in the supervised learning setting. The presented results hold in the general framework of vector-valued functions; therefore they can be applied to multitask problems. In particular, we observe that the concept of effective dimension plays a central role in the definition of a criterion for the choice of the regularization parameter as a function of the number of samples. Moreover, a complete minimax analysis of the problem is described, showing that the convergence rates obtained by regularized least-squares estimators are indeed optimal over a suitable class of priors defined by the considered kernel. Finally, we give an improved lower rate result describing worst asymptotic behavior on individual probability measures rather than over classes of priors.
MSC:
68T05Learning and adaptive systems