zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Convergence analysis of online algorithms. (English) Zbl 1129.68070
Summary: In this paper, we are interested in the analysis of regularized online algorithms associated with reproducing kernel Hilbert spaces. General conditions on the loss function and step sizes are given to ensure convergence. Explicit learning rates are also given for particular step sizes.
MSC:
68T05Learning and adaptive systems
References:
[1]N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950) 337–404. · doi:10.1090/S0002-9947-1950-0051437-7
[2]P.L. Bartlett, M.I. Jordan and J.D. McAuliffe, Convexity, classification, and risk bounds, Preprint, Department of Statistics, University of California Berkeley, 2003.
[3]S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge: Cambridge University Press, 2004).
[4]D.R. Chen, Q. Wu, Y.M. Ying and D.X. Zhou, Support vector machine soft margin classifiers: error analysis, J. Mach. Learn. Res. 5 (2004) 1143–1175.
[5]N. Cesa-Bianchi, P. Long and M. Warmuth, Worst-case quadratic loss bounds for prediction using linear functions and gradient descent, IEEE Trans. Neural Netw. 7 (1996) 604–619. · doi:10.1109/72.501719
[6]N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods (Cambridge: Cambridge University Press, 2000).
[7]F. Cucker and S. Smale, On the mathematical foundations of learning, Bull. Amer. Math. Soc. 39 (2001) 1–49. · Zbl 0983.68162 · doi:10.1090/S0273-0979-01-00923-5
[8]L. Devroye, L. Györfi and G. Lugosi, A Probabilistic Theory of Pattern Recognition (Berlin Heidelberg New York: Springer, 1997).
[9]T. Evgeniou, M. Pontil and T. Poggio, Regularization networks and support vector machines, Adv. Comput. Math. 13 (2000) 1–50. · Zbl 0939.68098 · doi:10.1023/A:1018946025316
[10]J. Kivinen, A.J. Smola and R.C. Williamson, Online learning with kernels, IEEE Trans. Signal Process. 52 (2004) 2165–2176. · doi:10.1109/TSP.2004.830991
[11]B. Blanchard, G. Lugosi and N. Vayatis, On the rate of convergence of regularized boosting classifiers, J. Mach. Learn. Res. 4 (2003) 861–894. · Zbl 1083.68109 · doi:10.1162/1532443041424319
[12]P. Niyogi and F. Girosi, On the relationships between generalization error, hypothesis complexity and sample complexity for radial basis functions, Neural Comput. 8 (1996) 819–842. · Zbl 05477968 · doi:10.1162/neco.1996.8.4.819
[13]C. Scovel and I. Steinwart, Fast rates for support vector machines, Los Alamos National Laboratory Technical Report, 2005.
[14]S. Smale and Y. Yao, Online learning algorithms, Preprint, Department of Mathematics, University of California Berkeley, 2004.
[15]S. Smale and D.X. Zhou, Estimating the approximation error in learning theory, Anal. Appl. 1 (2003) 17–41. · Zbl 1079.68089 · doi:10.1142/S0219530503000089
[16]S. Smale and D.X. Zhou, Shannon sampling and function reconstruction from point values, Bull. Amer. Math. Soc. 41 (2004) 279–305. · Zbl 1107.94007 · doi:10.1090/S0273-0979-04-01025-0
[17]S. Smale and D.X. Zhou, Shannon sampling II: Connection to learning theory, Preprint, 2004.
[18]V. Vapnik, Statistical Learning Theory (New York: John Wiley & Sons, 1998).
[19]Q. Wu, Y. Ying and D.X. Zhou, Multi-kernel Regularized Classifiers, Submitted to J. Complexity, Department of Mathematics, City University of Hong Kong, 2004.
[20]Y. Ying and D.X. Zhou, Learnability of Gaussians with flexible variances, Preprint, Department of Mathematics, City University of Hong Kong, 2004.
[21]Y. Ying and D.X. Zhou, Online regularized classification algorithms, Preprint, 2005.
[22]T. Zhang, Statistical behavior and consistency of classification methods based on convex risk minimization, Ann. Statis. 32 (2004) 56–85. · Zbl 1105.62323 · doi:10.1214/aos/1079120130
[23]D.X. Zhou, The covering number in learning theory, J. Complex. 18 (2002) 739–767. · Zbl 1016.68044 · doi:10.1006/jcom.2002.0635
[24]D.X. Zhou, Capacity of reproducing kernel spaces in learning theory, IEEE Trans. Inf. Theory 49 (2003) 1743–1752. · Zbl 05455194 · doi:10.1109/TIT.2003.813564