zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
LMI conditions for robust stability analysis based on polynomially parameter-dependent Lyapunov functions. (English) Zbl 1129.93485
Summary: The robust stability of uncertain linear systems in polytopic domains is investigated in this paper. The main contribution is to provide a systematic procedure for generating sufficient robust stability linear matrix inequality conditions based on homogeneous polynomially parameter-dependent Lyapunov matrix functions of arbitrary degree on the uncertain parameters. The conditions exploit the positivity of the uncertain parameters, being constructed in such a way that: as the degree of the polynomial increases, the number of linear matrix inequalities and free variables increases and the test becomes less conservative; if a feasible solution exists for a certain degree, the conditions will also be verified for larger degrees. For any given degree, the feasibility of a set of linear matrix inequalities defined at the vertices of the polytope assures the robust stability. Both continuous and discrete-time uncertain systems are addressed, as illustrated by numerical examples.
MSC:
93D09Robust stability of control systems
93B40Computational methods in systems theory