zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Chaos in a Lotka-Volterra predator-prey system with periodically impulsive ratio-harvesting the prey and time delays. (English) Zbl 1130.37042
Summary: We introduce and study a Lotka-Volterra predator-prey system with impulsive ratio-harvesting the prey and time delays. By using Floquet theory and small amplitude perturbation skills, we discuss the boundary periodic solutions for predator-prey system under periodic pulsed conditions. The stability analysis of the boundary periodic solution yields an invasion threshold of the predator. Further, by use of the coincidence degree theorem and its related continuous theorem we prove the existence of the positive periodic solutions of the system when the value of the coefficient is large than the threshold. Finally, by comparing bifurcation diagrams with different bifurcation parameters, we show that the impulsive effect and the time delays bring to the system to be more complex, which experiences a complex process of cycles quasi-periodic oscillation periodic doubling cascade chaos.
37N25Dynamical systems in biology
92D25Population dynamics (general)
37D45Strange attractors, chaotic dynamics
34C28Complex behavior, chaotic systems (ODE)