zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A Cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions. (English) Zbl 1130.76371
Summary: We describe a method for solving the two-dimensional Navier-Stokes equations in irregular physical domains. Our method is based on an underlying uniform Cartesian grid and second-order finite-difference/finite-volume discretizations of the streamfunction-vorticity equations. Geometry representing stationary solid obstacles in the flow domain is embedded in the Cartesian grid and special discretizations near the embedded boundary ensure the accuracy of the solution in the cut cells. Along the embedded boundary, we determine a distribution of vorticity sources needed to impose the no-slip flow conditions. This distribution appears as a right-hand-side term in the discretized fluid equations, and so we can use fast solvers to solve the linear systems that arise. To handle the advective terms, we use the high-resolution algorithms in CLAWPACK. We show that our Stokes solver is second-order accurate for steady state solutions and that our full Navier-Stokes solver is between first- and second-order accurate and reproduces results from well-studied benchmark problems in viscous fluid flow. Finally, we demonstrate the robustness of our code on flow in a complex domain.
76M12Finite volume methods (fluid mechanics)
76M20Finite difference methods (fluid mechanics)
76D05Navier-Stokes equations (fluid dynamics)
65N06Finite difference methods (BVP of PDE)