zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A class of Hurwitz-Lerch zeta distributions and their applications in reliability. (English) Zbl 1131.62093
Summary: We revisit the study of the Hurwitz-Lerch Zeta (HLZ) distribution by investigating its structural properties, reliability properties and statistical inference. More specifically, we explore the reliability properties of the HLZ distribution and investigate the monotonic structure of its failure rate, mean residual life function and the reversed hazard rate. It is shown that the HLZ distribution is log-convex and hence that it is infinitely divisible. Both the hazard rate and the reversed hazard rate are found to be decreasing. The maximum likelihood estimation of the parameters is discussed and an example is provided in which the HLZ distribution fits the data remarkably well.
62N05Reliability and life testing (survival analysis)
62N02Estimation (survival analysis)
62E10Characterization and structure theory of statistical distributions
60E07Infinitely divisible distributions; stable distributions
62F10Point estimation