zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Multihypothesis sequential probability ratio tests. I: Asymptotic optimality. (English) Zbl 1131.62313

Summary: The problem of sequential testing of multiple hypotheses is considered, and two candidate sequential test procedures are studied. Both tests are multihypothesis versions of the binary sequential probability ratio test (SPRT), and are referred to as MSPRTs. The first test is motivated by Bayesian optimality arguments, while the second corresponds to a generalized likelihood ratio test. It is shown that both MSPRTs are asymptotically optimal relative not only to the expected sample size but also to any positive moment of the stopping time distribution, when the error probabilities or, more generally, risks associated with incorrect decisions are small. The results are first derived for the discrete-time case of independent and identically distributed (i.i.d.) observations and simple hypotheses. They are then extended to general, possibly continuous-time, statistical models that may include correlated and nonhomogeneous observation processes. It also demonstrated that the results can be extended to hypothesis testing problems with nuisance parameters, where the composite hypotheses, due to nuisance parameters, can be reduced to simple ones by using the principle of invariance. These results provide a complete generalization of the results given by V. V. Veeravalli and C. W. Baum [see IEEE Trans. Inf. Theory 41, No. 6, Pt. 2, 1994–1997 (1995; Zbl 0844.62069)], where it was shown that the quasi-Bayesian MSPRT is asymptotically efficient with respect to the expected sample size for i.i.d. observations.

For Part II, see IEEE Trans. Inf. Theory 46, No. 4, 1366–1383 (2000; Zbl 1059.62581).


MSC:
62L10Sequential statistical analysis
62J15Paired and multiple comparisons