zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A regularization method for the proximal point algorithm. (English) Zbl 1131.90062
Summary: A regularization method for the proximal point algorithm of finding a zero for a maximal monotone operator in a Hilbert space is proposed. Strong convergence of this algorithm is proved.

90C30Nonlinear programming
49J40Variational methods including variational inequalities
47J20Inequalities involving nonlinear operators
65J15Equations with nonlinear operators (numerical methods)
[1]Brezis H. (1973). Operateurs Maximaux Monotones et Semi-Groups de Contractions dans les Espaces de Hilbert. North-Holland, Amsterdam
[2]Goebel, K. and Kirk, W.A. (1990), Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, Vol. 28, Cambridge University Press.
[3]Güler O. (1991) On the convergence of the proximal point algorithm for convex optimization. SIAM Journal of Control Optimization 29:403–419 · Zbl 0737.90047 · doi:10.1137/0329022
[4]Kamimura S. and Takahashi W. (2003), Strong convergence of a proximal-type algorithm in a Banach space. SIAM Journal of Optimization 13(3):938–945 · Zbl 1101.90083 · doi:10.1137/S105262340139611X
[5]Lehdili N. and Moudafi A. (1996). Combining the proximal algorithm and Tikhonov regularization. Optimization 37:239–252 · Zbl 0863.49018 · doi:10.1080/02331939608844217
[6]Rockafellar R.T. (1976). Monotone operators and the proximal point algorithm. SIAM Journal of Control Optimization 14: 877–898 · Zbl 0358.90053 · doi:10.1137/0314056
[7]Solodov M.V. and Svaiter B.F. (2000), Forcing strong convergence of proximal point iterations in a Hilbert space. Mathematical Programming, Series A 87:189–202
[8]Xu H.K. (2002). Iterative algorithms for nonlinear operators. Journal of the London Mathematical Society 66:240–256 · Zbl 1013.47032 · doi:10.1112/S0024610702003332