zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Finite time stability and stabilization of a class of continuous systems. (English) Zbl 1131.93043
The paper deals with systems of ODE’s in finite-dimensional space having unique solutions in forward time. It discusses finite-time stability, i.e., the strong version of asymptotic stability when the systems reaches the equilibrium point. The contains two main results. The first result shows that, under appropriate assumptions, existence of a Lyapunov function plus a certain integral property are necessary and sufficient for finite time stability of a system of ODE’s. The second result shows that a control-affine system admits a feedback making it finite time stable if and only if there exists a control Lyapunov function satisfying a certain differential inequality. In that case, the finite time stabilizing feedback is given in explicit form.
MSC:
93D15Stabilization of systems by feedback
93D30Scalar and vector Lyapunov functions
93C10Nonlinear control systems
93C15Control systems governed by ODE