zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Homotopy analysis method for quadratic Riccati differential equation. (English) Zbl 1132.34305
Summary: The quadratic Riccati differential equation is solved by means of an analytic technique, namely the homotopy analysis method. Comparisons are made between Adomian’s decomposition method, homotopy perturbation method and the exact solution and the homotopy analysis method. The results reveal that the proposed method is very effective and simple.
MSC:
34A45Theoretical approximation of solutions of ODE
References:
[1]Abbasbandy, S.: Homotopy perturbation method for quadratic Riccati differential equation and comparison with Adomian’s decomposition method, Appl math comput 172, 485-490 (2006) · Zbl 1088.65063 · doi:10.1016/j.amc.2005.02.014
[2]Abbasbandy, S.: Iterated he’s homotopy perturbation method for quadratic Riccati differential equation, Appl math comput 175, 581-589 (2006) · Zbl 1089.65072 · doi:10.1016/j.amc.2005.07.035
[3]Adomian, G.: Solving frontier problems of physics: the decomposition method, (1994)
[4]Adomian, G.; Rach, R.: On the solution of algebraic equations by the decomposition method, Math anal appl 105, 141-166 (1985) · Zbl 0552.60060 · doi:10.1016/0022-247X(85)90102-7
[5]Ayub, M.; Rasheed, A.; Hayat, T.: Exact flow of a third grade fluid past a porous plate using homotopy analysis method, Int J eng sci 41, 2091-2103 (2003) · Zbl 1211.76076 · doi:10.1016/S0020-7225(03)00207-6
[6]El-Tawil, M. A.; Bahnasawi, A. A.; Abdel-Naby, A.: Solving Riccati differential equation using Adomian’s decomposition method, Appl math comput. 157, 503-514 (2004) · Zbl 1054.65071 · doi:10.1016/j.amc.2003.08.049
[7]Hayat, T.; Khan, M.; Ayub, M.: On the explicit analytic solutions of an Oldroyd 6-constant fluid, Int J eng sci 42, 123-135 (2004) · Zbl 1211.76009 · doi:10.1016/S0020-7225(03)00281-7
[8]Hayat, T.; Khan, M.; Ayub, M.: Couette and Poiseuille flows of an Oldroyd 6-constant fluid with magnetic field, J math anal appl 298, 225-244 (2004) · Zbl 1067.35074 · doi:10.1016/j.jmaa.2004.05.011
[9]Hayat, T.; Khan, M.; Asghar, S.: Homotopy analysis of MHD flows of an Oldroyd 8-constant fluid, Acta mech 168, 213-232 (2004) · Zbl 1063.76108 · doi:10.1007/s00707-004-0085-2
[10]Hayat, T.; Khan, M.: Homotopy solutions for a generalized second-grade fluid past a porous plate, Nonlinear dyn 42, 395-405 (2005) · Zbl 1094.76005 · doi:10.1007/s11071-005-7346-z
[11]Hayat, T.; Khan, M.; Ayub, M.: On non-linear flows with slip boundary condition, Zamp 56, 1012-1029 (2005) · Zbl 1097.76007 · doi:10.1007/s00033-005-4006-6
[12]He, J. -H.: A coupling method of homotopy technique and perturbation technique for nonlinear problems, Int J nonlinear mech 35, No. 1, 37-43 (2000) · Zbl 1068.74618 · doi:10.1016/S0020-7462(98)00085-7
[13]Liao SJ. The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. Thesis, Shanghai Jiao Tong University, 1992.
[14]Liao, S. J.: An approximate solution technique which does not depend upon small parameters: a special example, Int J nonlinear mech 30, 371-380 (1995) · Zbl 0837.76073 · doi:10.1016/0020-7462(94)00054-E
[15]Liao, S. J.: An approximate solution technique which does not depend upon small parameters (Part 2): an application in fluid mechanics, Int J nonlinear mech 32, No. 5, 815-822 (1997) · Zbl 1031.76542 · doi:10.1016/S0020-7462(96)00101-1
[16]Liao, S. J.: An explicit totally analytic approximation of Blasius viscous flow problems, Int J non-linear mech 34, No. 4, 759-778 (1999)
[17]Liao, S. J.: Beyond perturbation: introduction to the homotopy analysis method, (2003)
[18]Liao, S. J.: On the homotopy anaylsis method for nonlinear problems, Appl math comput 147, 499-513 (2004) · Zbl 1086.35005 · doi:10.1016/S0096-3003(02)00790-7
[19]Liao, S. J.: Comparison between the homotopy analysis method and homotopy perturbation method, Appl math comput 169, 1186-1194 (2005) · Zbl 1082.65534 · doi:10.1016/j.amc.2004.10.058
[20]Liao, S. J.: A new branch of solutions of boundary-layer flows over an impermeable stretched plate, Int J heat mass transfer 48, 2529-2539 (2005) · Zbl 1189.76142 · doi:10.1016/j.ijheatmasstransfer.2005.01.005
[21]Liao, S. J.; Pop, I.: Explicit analytic solution for similarity boundary layer equations, Int J heat mass transfer 47, 75-78 (2004) · Zbl 1045.76008 · doi:10.1016/S0017-9310(03)00405-8