zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A stabilized finite element method based on two local Gauss integrations for the Stokes equations. (English) Zbl 1132.35436
Summary: This paper considers a stabilized method based on the difference between a consistent and an under-integrated mass matrix of the pressure for the Stokes equations approximated by the lowest equal-order finite element pairs. This method offsets only the discrete pressure space by subtracting the simple and symmetrical term at element level in order to circumvent the inf-sup condition. Optimal error estimates are obtained by applying the standard Galerkin technique. Finally, the numerical illustrations are presented completely in agree with the theoretical expectations.

MSC:
35Q30Stokes and Navier-Stokes equations
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
76D05Navier-Stokes equations (fluid dynamics)
76M10Finite element methods (fluid mechanics)
References:
[1]Barth, T.; Bochev, P.; Gunzburger, M. D.; Shadid, J. N.: A taxonomy of consistently stabilized finite element methods for the Stokes problem, SIAM J. Sci. comput. 25, 1585-1607 (2004) · Zbl 1133.76307 · doi:10.1137/S1064827502407718
[2]Becker, R.; Braack, M.: A finite element pressure gradient stabilization for the Stokes equations based on local projections, Calcolo 4, 211-224 (2001)
[3]Bochev, P. B.; Dohrmann, C. R.; Gunzburger, M. D.: Stabilization of low-order mixed finite elements for the Stokes equations, SIAM J. Numer. anal. 44, 82-101 (2006) · Zbl 1145.76015 · doi:10.1137/S0036142905444482
[4]Bochev, P. B.; Gunzburger, M. D.: An absolutely stable pressure-Poisson stabilized finite element method for the Stokes equations, SIAM J. Numer. anal. 42, 1189-1207 (2004) · Zbl 1159.76346 · doi:10.1137/S0036142903416547
[5]Brefort, B.; Ghidaglia, J. M.; Temam, R.: Attractor for the penalty Navier – Stokes equations, SIAM J. Math. anal. 19, 1-21 (1988) · Zbl 0696.35131 · doi:10.1137/0519001
[6]Brezzi, F.; Douglas, J.: Stabilized mixed methods for the Stokes problem, Numer. math. 53, 225-235 (1988) · Zbl 0669.76052 · doi:10.1007/BF01395886
[7]Brezzi, F.; Fortin, M.: A minimal stabilisation procedure for mixed finite element methods, Numer. math. 3, 457-491 (2001) · Zbl 1009.65067 · doi:10.1007/s002110100258
[8]E. Burman, A note on pressure projection stabilizations for Galerkin approximations of Stokes problem, Numer. Meth. Part D E, to appear. · Zbl 1139.76029 · doi:10.1002/num.20243
[9]Buscagliaa, G. C.; Basombrio, F. G.; Codinab, R.: Fourier analysis of an equal-order incompressible flow solver stabilized by pressure gradient projection, Internat. J. Numer. methods fluids 34, 65-92 (2000) · Zbl 0985.76049 · doi:10.1002/1097-0363(20000915)34:1<65::AID-FLD56>3.0.CO;2-J
[10]Ciarlet, P. G.: The finite element method for elliptic problems, (1978)
[11]Dohrmann, C. R.; Bochev, P.: A stabilized finite element method for the Stokes problem based on polynomial pressure projections, Internat. J. Numer. methods fluids 46, 183-201 (2004) · Zbl 1060.76569 · doi:10.1002/fld.752
[12]Douglas, J.; Wang, J.: An absolutely stabilized finite element method for the Stokes problem, Math. comput. 52, 495-508 (1989) · Zbl 0669.76051 · doi:10.2307/2008478
[13]Gerdes, K.; Schöktza, D.: Hp-finite element simulations for Stokes flow — stable and stabilized, Finite elements anal. Design 33, 143-165 (1999) · Zbl 0965.76043 · doi:10.1016/S0168-874X(99)00018-9
[14]Girault, V.; Raviart, P. A.: Finite element method for Navier – Stokes equations: theory and algorithms, (1987)
[15]Hughes, T.; Franca, L.; Balestra, M.: A new finite element formulation for computational fluid dynamics: V. Circumventing the babuska – brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. methods appl. Mech. eng. 59, 85-99 (1986) · Zbl 0622.76077 · doi:10.1016/0045-7825(86)90025-3
[16]Layton, W.: Model reduction by constraints, discretization of flow problems and an induced pressure stabilization, Numer. linear algebra appl. 12, 547-562 (2005) · Zbl 1164.76364 · doi:10.1002/nla.440
[17]Layton, W.; Tobiska, L.: A two-level method with backtraking for the Navier – Stokes equations, SIAM J. Numer. anal. 35, 2035-2054 (1998) · Zbl 0913.76050 · doi:10.1137/S003614299630230X
[18]Silvester, D. J.: Optimal low-order finite element methods for incompressible flow, Comput. methods appl. Mech. eng. 111, 357-368 (1994) · Zbl 0844.76059 · doi:10.1016/0045-7825(94)90139-2
[19]D.J. Silvester, Stabilised mixed finite element methods, Numerical Analysis Report No. 262, 1995.
[20]D.J. Silvester, Stabilised vs stable mixed finite element methods for incompressible flow, Numerical Analysis Report No. 307, 1997.
[21]Silvester, D. J.; Kechkar, N.: Stabilized bilinear-constant velocity-pressure finite elements for the conjugate gradient solution of the Stokes problem, Comput. methods appl. Mech. eng. 79, 71-86 (1990) · Zbl 0706.76075 · doi:10.1016/0045-7825(90)90095-4