zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Generalized likelihood ratio tests for the structure of semiparametric additive models. (English) Zbl 1132.62025
Summary: Semiparametric additive models (SAMs) are very useful in multivariate nonparametric regression. In this paper, the authors study nonparametric testing problems for the nonparametric components of SAMs. Using the backfitting algorithm and the local polynomial smoothing technique, they extend to SAMs the generalized likelihood ratio tests of J. Fan and J. Jiang [J. Am. Stat. Assoc. 100, No. 471, 890–907 (2005; Zbl 1117.62328)]. The authors show that the proposed tests possess the Wilks-type property and that they can detect alternatives nearing the null hypothesis with a rate arbitrarily close to root-n while error distributions are unspecified. They report simulations which demonstrate the Wilks phenomenon and the powers of their tests. They illustrate the performance of their approach by simulation and using the Boston housing data set.
62G08Nonparametric regression
62G10Nonparametric hypothesis testing
62J12Generalized linear models
65C60Computational problems in statistics
62H12Multivariate estimation